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Abstract 
If one can find a control Lyapunov function (CLF) for a given nonlinear system, the control input stabilizing the system can be easily 
obtained. To find a CLF, the time derivative of an energy function should be negative definite. This procedure frequently requires a control 
input which is a rational function or includes an inverse function. The control input is not defined on the specific state-space where the 
denominator of the rational function is equal to 0 or the inverse function does not exist. In this region with singularities, the trajectory of the 
control system cannot be generated, which is one of the most important reasons why it is hard to make the origin of a nonlinear system be 
globally asymptotically stable. In this paper, we propose a smooth control law ensuring the globally asymptotic stability by means of 
cancelling the singularity in the control input. 
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1. Introduction 
 
There is general-purpose control scheme for nonlinear 

systems but it is known that several control schemes are 
applicable to restricted nonlinear systems which satisfy specific 
conditions, for example, sliding mode control, feedback 
linearization, backstepping, etc [3,4,6]. In spite of the variety of 
nonlinear controllers, the stability criterion using an energy 
function is the most common method. The control Lyapunov 
function (CLF) approach is an example that such energy 
function is used actively to design a controller for a nonlinear 
system [7]. But, this approach has a limitation in ensuring the 
global stability because a singularity frequently attends the 
control input. The purpose of this paper is to design a smooth 
control law which can guarantee the global stability by means 
of cancelling the singularity of the control input generated in 
the procedure of CLF design. 

One can find a CLF for a given nonlinear system by 
assigning the control input which makes the time derivative of 
an energy function selected appropriately be negative definite. 
In this procedure, the control input involves an inverse function 
or a rational function. Unfortunately, the control input is not 
defined on the specific state-space where the inverse function 
does not exist or the denominator of the rational function is 
equal to 0. In this region called the singular manifold, the 
trajectory of the control system cannot be generated because 

the control input diverges. And, in the vicinity of the singular 
manifold, the control system becomes uncontrollable because 
the control input is saturated. These divergence and saturation 
in the control input make it impossible for the trajectory of the 
control system to across the singular manifold. Thus, the 
existing CLF approach provides a control law ensuring the 
local stability around an equilibrium point except the singular 
manifold. This situation diminishes the virtue of the CLF 
approach because the local stability also can be achieved by a 
conventional linear controller based on the linearization of a 
given nonlinear system around the equilibrium point. 

There have been many researches to cope with the 
singularity problem such as extending the attraction region 
around the equilibrium point and avoiding the singularity by a 
discontinuous control input. For example, backstepping is 
applied to extend a small attraction region by feedback 
linearization, but the global stability is not guaranteed because 
the singularity of the resulting control system still remains [6]. 
Some methods can achieve the global stability by avoiding the 
singularity, for instance, variable structure control [8,11], 
sliding mode control [1,3], adaptive control [2], and fuzzy 
control [5]. The basic idea of these methods is to change the 
control input or the dynamics of the system for the trajectory of 
the control system to avoid the singularity when the trajectory 
approaches the singular manifold. These methods involve a 
switching action between several control laws or system dynamics, 
which causes the discontinuity in the control system. The 
discontinuity may make it difficult to analyze the stability, can 
cause chattering, and may impose an impulse shock on the system. 

In this paper, we propose a method cancelling the singularity 
generated in the procedure of CLF design. The global stability 
of the control system is ensured because the proposed control 
law does not involve the singularity and is well defined on the 
overall state-space. And, the smooth trajectory of the control 
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system is generated because the proposed control scheme does 
not need a switching action. Finally, some examples are 
addressed to verify the simplicity and the efficiency of the 
proposed method compared with feedback linearization, 
backstepping, and sliding mode control. 

 
 

2. Singularity in CLF Approach 
 

The CLF approach is to assign a control input to make the time 
derivative of an energy function selected appropriately be 
negative definite. Consider a nonlinear system with a single 
input as follows: 

( ) ( )x f x g x u= +&               (1) 

Suppose that there is an energy function ( )V x  which is a 
continuous and positive definite function. The time derivative 
of the energy function along the trajectory of the system (1) is 

 
( ) ( ) ,

V V x

V f x g x u

= ∇

= ∇ +⎡ ⎤⎣ ⎦

& &
 

where V∇  denotes the gradient of V  with respect to x . If 
the control input u  satisfies 

( )
( )

V f x
u

V g x
∇

< −
∇

              (2) 

on the overall state-space except the origin, then V&  is also 
negative definite except the origin. The existence of this CLF 
guarantees that the origin of the system is globally 
asymptotically stable. But, the control input satisfying (2) has a 
singularity when the denominator is equal to 0 because the 
control input is given as a rational function. That means the 
trajectory of the control system cannot be generated on such 
region called the singular manifold because the control input 
diverges. Especially, if the singular manifold spans the overall 
state-space, the trajectory cannot converge to the origin when 
the initial state is given beyond the singular manifold because 
the trajectory cannot across that. Thus, one cannot assert the 
globally asymptotic stability of the origin of the control system. 
In addition, the control system may become uncontrollable 
when the trajectory approaches the singular manifold because 
the control input is saturated before it diverges. 

In case of multi-inputs system, the required control inputs 
are given as not rational functions but inverse functions. The 
singularity appears when the inverse of a given matrix does not 
exist, and the saturation may occur when the condition number 
of a matrix is large [9,10,12]. 
 
 

3. Cancelling Singularity in CLF Design 
 
In this paper, we propose a smooth control law which 

ensures the globally asymptotic stability of the origin of a given 
nonlinear system by cancelling the input singularity generated 
in the procedure of CLF design. Consider an affine nonlinear 

system with a single input u  and a constant input matrix B  
as follows: 

 ( )x f x Bu= +& , 

where 1nx ×∈   is a state variable , ( ) 1nf x ×∈  is a drift 
system which is a smooth vector function, 1nB ×∈   is a input 
matrix whose elements are constants, and u∈   is a control 
input. Suppose that the drift system ( )f x  consists of a linear 
part Ax  and a nonlinear part ( )xφ  which is a real-analytic 
function. Then, the given nonlinear system can be rewritten as 

 ( )x Ax x Buφ= + +& .                 (3) 

If there is a smooth control input which makes the time 
derivative of an energy function be negative definite, the 
asymptotic stability of the origin of (3) is guaranteed. To 
extend this argument to the global stability, an additional 
condition in the energy function is required. 
Definition. A function satisfying  

( )V x →∞  as x →∞  

is said to be radially unbounded [4]. 

Lemma. Let the origin be an equilibrium point for (3). If there 
is a continuously differentiable function : nV →   such 
that 

 
( ) ( )
( )
0 0 and 0, 0,

0, 0,
is radially unbounded.

V V x x

V x x
V

= > ∀ ≠

< ∀ ≠&        (4) 

Then, the origin is globally asymptotically stable [4]. 
This lemma states the general requirements, that is, the 
existence of the energy function satisfying (4) guarantees the 
globally asymptotic stability. But, it is hard to find such energy 
function for each individual nonlinear system. The following 
theorem starts from the simplest energy function in the form of 
a perfect square and concentrates on designing a smooth 
control input which makes the function be a CLF for a given 
nonlinear system. 

Theorem. For the system (3), if the pair ( , )A B  is 
controllable and there is an energy function TV x Mx=  such 
that BL V  is a factor of L Vφ , where M  is a symmetric 
positive definite matrix. Then, there exists a smooth control 
input which guarantees the globally asymptotic stability of the 
origin of (3). 
Proof. Assign the control input u  for the system (3) as 

 ( )Tu K x xρ= − + ,               (5) 

where 1nK ×∈   is a state feedback gain and ( )xρ  is a 
nonlinear state feedback. By this control input the given 
nonlinear system (3) becomes 

 ( ) ( ) ( )Tx A BK x x B xφ ρ= − + +& . 

Meanwhile, the time derivative of an energy function V  
along the trajectory of the system is 
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 ( ) ( ) ( )

( ) ( ) ,

T

x Bx

V V x

V A BK x x B x

L V L V L V xφ

φ ρ

ρΓ

= ∇

⎡ ⎤= ∇ − + +⎣ ⎦
= + +

& &

 

where 1 nV ×∇ ∈   is the gradient of V  with respect to x , 
hL V  is the Lie derivative of V  along h , and TA BKΓ = − . 

There exists a state feedback gain K  which allows Γ  to be 
a Hurwitz matrix because the pair ( ),A B  is controllable. Let 

( )L V a xφ = , ( )BL V b x= , and ( )xL V c xΓ = , then 

 ( ) ( ) ( ) ( )V c x a x b x xρ= + +& .         (6) 

Using an energy function TV x Mx=  which satisfies the first 
condition of (4), the first term of the right hand side of (6) is 

 ( ) ( )T Tc x x M M x= Γ + Γ . 

Because Γ  is a Hurwitz matrix there exist a symmetric 
positive definite matrix N  such that 

 TM M NΓ +Γ = − , 

which yields ( ) 0c x <  for all x  except the origin. 

If the nonlinear state feedback of (5) and (6) is assigned as 

 ( ) ( )
( )
a x

x
b x

ρ = − ,               (7) 

then the time derivative of the energy function (6) is less than 0 
for all x  except the origin and the singular manifold 

{ | ( ) 0}S x b x= = . By the assumption, ( )b x  is a factor of 
( )a x , the denominator of (7) is cancelled out. This leads to the 

result that the control input (5) is a smooth function and well 
defined on the overall state-space, which satisfies the second 
condition of (4) and the continuous differentiability of ( )V x . 

The third condition of (4) is confirmed by Rayleigh 
inequality as follows: 

 ( ) ( )2 2
min maxM x V M xλ λ≤ ≤ , 

where minλ  and maxλ  denote the minimum and the 
maximum eigenvalue, which are real numbers because M  is 
a symmetric matrix. As || ||x  diverges to infinity, the lower 
bound diverges and so does the energy function. Therefore, the 
smooth control input (5) allows the energy function V  to be a 
CLF for the given system and guarantees the globally 
asymptotic stability of the origin.  ■ 
Remark. This theorem is a special case of Artstein’s theorem 
which states that the existence of a smooth CLF implies smooth 
stabilizability [7]. The author therein proposed a feedback 
control law 

 
( ) ( )2 4

f f B

B

L V L V L V
u

L V

+ +
= −  

which provides a proof of Artstein’s theorem. The 
singularity in this control law does not appear as long as V  
satisfies the small control property around the origin, that is, 

the denominator BL V  is sufficiently small when x  is small. 
This work addressed a conceptual approach based on the 
existence of a CLF but did not show how to design such a CLF.  

 
 

4. Examples 
 
In general, it is not easy to find an appropriate CLF for a 

given nonlinear system. In this paper, we concentrate on 
designing a control input which makes the simplest energy 
function in the form of a perfect square be a CLF. The 
following examples show that the proposed method provides a 
smooth control law guaranteeing the globally asymptotic 
stability unlike the existing methods which have a limitation in 
ensuring the global stability because of the singularity in the 
control input or the smooth trajectory because of the 
discontinuity in the control input. 
 

4.1 Local Stability by Feedback Linearization 
This example is the case that the region of attraction is 

restricted because of the singularity in the control input 
designed by using feedback linearization. 

 
1 1 2 3

2 1 3 2

3 1

x x x x
x x x x u
x x u

= − + −

= − − +

= − +

&

&

&

.                  (8) 

The resulting control input by feedback linearization is given as 

 ( )2 2
1 2 3 2 3 1 3 1 3

1

1 3 4 2 3
1

u v x x x x x x x x x
x

= − + − − + + +
+

. (9) 

By this control input, the nonlinear system (8) becomes a linear 
system with a new control input ν  in (9). The asymptotic 
stability of the origin of the system can be achieved by an 
arbitrary state feedback which stabilizes the linearized system 
[4]. However, because the control input (9) has the singular 
manifold 1{ | 1 0}S x x= + = , the control input is not defined 
on this manifold. And the manifold spans the overall state-
space. Thus, the global stability of the control system is not 
ensured. For example, the trajectory starting from an initial 
state 0 [ 2 0 0]Tx = −  can not converge to the origin because 
it can not across the singular manifold. 

To apply the proposed method, rewriting the system (8) in 
the form of (3) yields 

 

( )

1 3

1 1 1 0 0
0 1 0 1
1 0 0 1 0

x Ax Bu x

x u x x

φ= + +

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

. 

The pair ( , )A B  of the system is controllable because the 
controllability matrix has full rank. Let an energy function be 

TV x Mx= , where M  is an arbitrary symmetric positive 
definite matrix as follows: 
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11 12 13

12 22 23

13 23 33

m m m
M m m m

m m m

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

And, calculate L Vφ  and BL V . 

 
( )

( ) ( ) ( )
1 3 12 1 22 2 23 3

12 13 1 22 23 2 23 33 3

2 ,

2 .B

L V x x m x m x m x

L V m m x m m x m m x
φ = − + +

= + + + + +⎡ ⎤⎣ ⎦
 

Assign the elements of M  to make BL V  be 3x  which is a 
factor of L Vφ . For example, 12 13m m= − , 22 23m m= − , and 
the other elements are chosen arbitrarily for M  to be positive 
definite as follows: 

 

2 1 1
1 1 1 0
1 1 3

M
−⎡ ⎤

⎢ ⎥= − >⎢ ⎥
⎢ ⎥− −⎣ ⎦

. 

This symmetric positive definite matrix allows 

 
( )1 3 1 2 3

3

2
4B

L V x x x x x
L V x
φ = − + −

=
           (10) 

to satisfy the assumption of Theorem in Section 3 and the 
energy function V to be a CLF for the given system. The 
resulting control input by (5), (7), and (10) is 

 ( )1 1 2 3
1
2

Tu K x x x x x= − + + − ,        (11) 

where K  is a state feedback gain for TA BK−  to be stable. 
Unlike the control input (9) by feedback linearization, there is 
no singularity in the proposed control input (11). Thus, the 
globally asymptotic stability of the origin of the system (8) is 
guaranteed by the proposed smooth control input. 
 

4.2 Extending Attraction Region by Backstepping 
This example is the case that the region of attraction is 
extended by using backstepping, however, the singularity still 
remains. 

 ( )
1 2

2 1 1 2 3

3

1
x x
x x x x x
x u

=

= + + +

=

&

&

&

.          (12) 

The resulting control input by backstepping is given as 

 ( )

( )
( )

( )

1 1

2 2 1 1

3 3 2 2 1 2 1
1 2

1 2
3 3 1 2 1 2 32

1 2

1 2 2

1 2
1

1
1

1 ,

z x
z x x

z x z x x
x x

u z x x x x x
x x

x x z

ε

ε ε

ε ε
ε

=
= +

= + + +
+ +

+
= − − + + + +⎡ ⎤⎣ ⎦+ +

− + +

  (13) 

where 1ε , 2ε , 3ε  are design parameters [6]. The control 

input u  in (13) includes a rational function, thus u  is not 
defined on the singular manifold 1 2{ | 1 0}S x x x= + + = , 
which obstructs the global stability of the control system. 
To apply the proposed method, rewriting the system (12) in the 
form of (3) yields 

 

( )

1 3

1 1 1 0 0
0 1 0 1
1 0 0 1 0

x Ax Bu x

x u x x

φ= + +

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

 

The pair ( , )A B  of the system is controllable because the 
controllability matrix has full rank. Let an energy function be 

TV x Mx= , where M  is an arbitrary symmetric positive 
definite matrix. And calculate L Vφ  and BL V . 

 
( )( )

( )
3 1 2 12 1 22 2 23 3

13 1 23 2 33 3

2

2B

L V x x x m x m x m x

L V m x m x m x
φ = + + +

= + +
 

Assign the elements of M  to make BL V  be 3x  which is a 
factor of L Vφ . For example, put 13 23 0m m= =  and the 
other elements are chosen arbitrarily for M  to be positive 
definite as follows: 

 

2 1 0
1 1 0 0
0 0 1

M
⎡ ⎤
⎢ ⎥= >⎢ ⎥
⎢ ⎥⎣ ⎦

 

This symmetric positive definite matrix allows 

 
( )2

1 2 3

3

2
2B

L V x x x
L V x
φ = +

=
             (14) 

to satisfy the assumption of Theorem in Section 3 and the 
energy function V  to be a CLF for the given system. The 
resulting control input by (5), (7), and (14) is 

 ( )2
1 2

Tu K x x x= − − + ,          (15) 

where K  is a state feedback gain for TA BK−  to be stable. 
Unlike the control input in (13) by backstepping, there is no 
singularity in the proposed control input (15). Thus, the 
globally asymptotic stability of the origin of the system (12) is 
guaranteed by the proposed smooth control input. 
 
4.3 Global Stability by Sliding Mode Control 

This example is the case that the globally asymptotic stability is 
achieved by sliding mode control, however, the trajectory of 
the control system is not smooth because of the discontinuity in 
the control input. 

 

2
1 3 2

2 3

3

x x x
x x
x u

= −
=
=

&

&

&
.               (16) 
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The resulting control input by sliding mode control is given as 

 

( )
( )

( ) ( )

( ){ }

2
3 2 3

3

2
1 3 2

2
1 3 2

2

sign

min , sign ,

sm

sm

x x x x

x x

k x x x
u

u u l x x x

α

β

α

β

β

= − −

=

+ + −
= −

⎡ ⎤= − + −⎣ ⎦

  (17) 

where k  and l are design parameters [3]. The discontinuity 
in u  of (17) makes it difficult to analyze the stability, can 
causes chattering, and may impose an impulse shock on the 
system. From a practical point of view, the chattering and the 
impulse shock are the main sources of noise. 
Rewriting the system (16) in the form of (3) yields 

 

( )
2
30 1 0 0

0 0 1 0 0
0 0 0 1 0

x Ax Bu x

x
x u

φ= + +

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= + + ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

. 

The pair ( , )A B  of the system is controllable because the 
controllability matrix has full rank. Let an energy function be 

TV x Mx= , where M  is an arbitrary symmetric positive 
definite matrix.  And calculate L Vφ  and BL V . 

 
( )
( )

2
11 1 12 2 13 3 3

13 1 23 2 33 3

2

2B

L V m x m x m x x

L V m x m x m x
φ = + +

= + +
 

Assign the elements of M  to make BL V  be 3x  which is a 
factor of L Vφ . By the same manner in the previous section, 
put 13 23 0m m= =  and the other elements are chosen 
arbitrarily for M  to be positive definite as follows: 

 

2 1 0
1 1 0 0
0 0 1

M
⎡ ⎤
⎢ ⎥= >⎢ ⎥
⎢ ⎥⎣ ⎦

 

This symmetric positive definite matrix allows 

 ( ) 2
1 2 3

3

2 2
2B

L V x x x
L V x
φ = +

=
              (18) 

to satisfy the assumption of Theorem in Section 3 and the 

energy function V  to be a CLF for the given system. The 

resulting control input by (5), (7), and (18) is 

 ( )1 2 32Tu K x x x x= − − + ,        (19) 

where K  is a state feedback gain for TA BK−  to be stable. 
Unlike the control input in (17) by sliding mode control, there 
is no discontinuity in the proposed control input (19). Thus, the 
proposed method provides a smooth control input which 
guarantees the globally asymptotic stability of the origin of the 
system (16). 

5. Conclusions 
 
In this paper, we proposed a control method by cancelling 

the input singularity generated in the procedure of CLF design. 
The proposed method guaranteed the globally asymptotic 
stability and provided a smooth control law unlike the existing 
methods such as feedback linearization, backstepping, and 
sliding mode control. The examples showed the simplicity and 
the efficiency of our approach. However, the singularity was 
represented as a linear combination because of the assumption 
that the input matrix is a constant and that the energy function 
is a perfect square form. This caused fewer choices in 
cancellation terms and restrictions on applicable systems. 
Further research is required to improve the applicability of the 
method by considering more various energy functions 
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