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Stable Input-Constrained Neural-Net Controller for
Uncertain Nonlinear Systems

Jang-Hyun Park and Gwi-Tae Park

Abstract - This paper describes the design of a robust adaptive controller for a nonlinear dynamical system with unknown
nonlinearities. These unknown nonlinearities are approximated by multilayered neural networks (MNNs) whose parameters are
adjusted on-line, according to some adaptive laws for controlling the output of the nonlinear system, to track a given
trajectory. The main contribution of this paper is a method for considering input constraint with a rigorous stability proof. The
Lyapunov synthesis approach is used to develop a state-feedback adaptive control algorithm based on the adaptive MNN
model. An overall control system guarantees that the tracking error converges at about zero and that all signals involved are
uniformly bounded even in the presence of input saturation. Theoretical results are illustrated through a simulation example.
Keywords - input constraint, neural-net control, robust adaptive nonlinear control

1. Introduction

Researching nonlinear control is experiencing rapidly
increasing activity. In particular, the theory of explicitly
linearizing the input/output response of nonlinear systems
to linear systems using the state feedback has received
great attention [1,2]. However, this theory relies on an
exact cancellation of nonlinear terms to obtain linear
input/output behavior. For many highly nonlinear dynamic
systems, developing accurate mathematical models is
generally difficult, i.e., inevitable uncertainties exist in the
constructed models. Therefore, the design of a robust
controller that can deal with model uncertainties is very
important.

Multilayered neural networks (MNNs) have been
successfully applied to many control problems because
they need no accurate mathematical models of the system
under consideration. Neural networks are well-known for
their ability to approximate certain classes of functions to
a given accuracy [3,4], and furthermore, the output of the
system can be represented by a linear combination of
basis functions such as radial basis functions [5]. Based
on this property, many researchers presented an adaptive
control architecture for uncertain nonlinear systems
[6-17]. Compared with conventional adaptive control,
needing no linear parameterization condition on the
nonlinearities of the system is the key advantage of the
control scheme using the NNs is. In the direct adaptive
control scheme, the NNs are used to approximate an
optimal controller [6,7]. In the indirect one, meanwhile,
the MNNs are used to estimate the plant dynamics and
these estimates are used to design the controller that
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achieves asymptotic tracking of a reference input [8-17].
For both schemes, the adjustable parameters are updated
on-line by an adaptive law based on a Lyapunov
approach.

The purpose of this paper is to develop an indirect
adaptive control algorithm using the MNNs for uncertain
nonlinear dynamical system under input constraint. As far
as we know, no research result exists regarding
constrained adaptive control of wuncertain nonlinear
systems using MNNs. We propose a new control input
that can consider input saturation intuitively and analyze
the stability of the closed-loop system in the Lyapunov
standpoint. We also induce the conditions on the design
constants that compensate for the degradation of the
tracking performance caused by the saturation of the
control input. The proposed controller guarantees that
tracking error converges at about zero and that the states
and estimated parameters are all bounded even in the
presence of the input saturation.

2. Description of Neural Networks

In this paper, the linearly parameterized NNs [16] are
used to capture the unknown nonlinearities of the system.
In general, the output of the multi-input single-output NN
is described by

ﬁ(xl0)=§9.-§i (x)=0"¢(x) )

where xeR" is the input vector to the NNs, A= R is
the output, d= R" is the adjustable weight vector, and
& - }:R">R% is the activation function vector. Among
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the various MNN models, for example, in the case of
radial basis function network (RBFN), ¢, /=1,--L is
the synaptic weight between the 7th neuron in the hidden
layer and the output neuron. &;( x) is a Gaussian
function in the form of

~ |x—c,.|]
éi X)=¢€xp| - 2
(x) P[ 20 6)
Ex)=[&4(x) &) - & (3)

where ¢; is an n-dimensional vector representing the
center of the /th basis function and ¢, is the variance
representing the spread of the basis function [5].

The key advantage of such NNs is their ability to
approximate nonlinear mapping to any degree of
accuracy, which is summarized in the following theorem.

Theorem 1. (Universal Approximation Theorem): For
any given real continuous function / on a compact set
£,€R" and an arbitrary ¢,>() , there exists an NN J
in the form of Eq. (1) such that

sup’};(x IO*)—h(x)l <&,
xe2, (4)

A proof of this theorem is given in [3-5]. Note that
network reconstruction error arises as a result of the
inadequacy of the NNs to exactly match an uncertain
nonlinear function even if optimal weights to be selected.
However, we can make ¢, arbitrarily small by increas-

ing the size of the vector &( x).

3. Controller Design and Stability Analysis
3.1 Problem Formulation

In this section, we first set up control objectives and
then show how to design an adaptive controller, based on
the MNNSs, to achieve the objectives.

Consider the #nth-order nonlinear systems of the form

x = f'(x)+g(x)u
y=x &)

where f° and g are unknown continuous functions, z€R

and ye R are the input and output of the system, respec-

(n—l)] T is

tively, and  x =[x, x5, -, 2,1 =[x, %,-, x

the state vector of the system that is assumed to be

measurable. For Eq. (5) to be controllable, g( x) is
required to be nonzero for all x in the -certain
controllability region @2, R". Since g( x) is continuous
and, without loss of generality, we assume that g( x) is
positive and its lower bound g, exists, 1ie,
g(x)=>g;>0 for
force the output y(¢) to track a given bounded reference
signal y, (£ under the constraint that all signals involved
must be bounded and the control input must lie in the
prescribed region.
Before preceding, let us rewrite Eq. (5) as

x =Q,. The control objective is to

y(")=f(x)+g(x)u—ka ©)

where
F(x)=f(x)+k"x

and k=1[k,--k]7 is determined such that the polyno-
mial  A(s)=s"+k,s" '+--+£k is Hurwitz. We

approximate the functions f( x), g( x) using the MNN
model in the form of Eq. (1) and, in the sequel, denote

those terms as 7, g.
3.2 Controller Design and Stability Proof

A control law is proposed as

1 o
u= —f(x)+a+
£+§(X)( J(x)+a+B)
a=y +K'x, @)
where e>( is a positive function and x,=[y, ys

yi* Vwith y, being desired output, and £ is a
robustness term to be defined later. It is easily observed
that if =0, the proposed control law is the same as
that of the adaptive feedback linearizing control schemes
[8-17]. We introduce e-term in the control to consider
input saturation, which will be explained in detail later.

Substituting Eq. (7) into Eq. (6) can yield the following
error dynamics.

o = 50 _ 40
=f(x)+ g(x)u+(£ +§(x))u —(e+g(x))u —y—xTx
=—kTe+f(x)-—f’(x)+(g(x)—§(x))u—£u+[3
(8)
where e=y—y, and e=[e e - ¢ " V]. The above
equation can be rewritten as
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é=Ae+b[—(f”—f’)+(f—f')—(g‘—§’)u+(g‘§*)u
—gu+ B]

= de+b[-0/&, (x)+6,-6]¢, (x)u+8,u

——— (-7 +a+B)+B]

E+g
&)
where
0 1 0 0 0
0 0 1 0 0
A= ,b= .
_kn —kn—l _kn—Z —kl I
and O=6,~6;, ¥,=6,—46,, 7" and g are

shortened denotations of 7*( x,6)) and g ( x,6}),

respectively. 4; and g are optimal approximation
parameters and are assumed to exist according to the
universal approximation theorem such that 7, ? can
approximate f, g as best as possible. Therefore,
8,=f—F" and §,=g— g" denote the corresponding
minimum approximation errors.

Since A is a stable matrix, there exist the positive
symmetric matrix P and positive constant ¢ satisfying

T = —
ATP+PA=—ql (10)

The term ez in Eq. (9) is generated because of the &
-term in the numerator of the control law. This
newly-introduced disturbance will later be compensated
for by additional conditions on the design constants.

Consider the Lyapunov function

V=t Pet——616,+—076,
2 2y, 2y, 11

where 7y, 7,>0 are learning rates. Differentiating V'
along the solution of Eq. (9), we obtain

V= —%q|el2 +eTPb[-—9~fT§f —égégu +0,+6,u

£ A 1 ~r. 1 ~ .
—(-f+a+B)+B1+—6070, +—676
8+g2( ) v Ty R (12)

We now propose a gradient update law with constant ¢
-modification [19] for adjusting 8, and 4, as

6,=7, (eprgf -0,8, ) (13)

6,=v,(e'PrE,u-0,0,) (14)
where oy, 0,>0 are the design constants. Substituting Eq.
(13) and Eq. (14) into Eq. (12), we have that

.1 - B
V= _§q|e|2 - O-fefref _o-gegrog

T £ 2
—e Pb(g—_*_'g(—f+a+ﬁ)J+A (15)

where

A=eTPb(5f+5gu)+eTPbﬂ ‘ (16)

We need the following assumptions for the stability
proof.

Assumption 1: There exists the known constant ¢> ()
such that

|8, +8,u,|<w an
where
ty = ———(-F (x)+at)

e+£(x) (18)
for all xe,.

Assumption 2: There exists a constant y such that

~

0<£g—i-<y<l
£+

(19)

for all x=Q,.

Assumption 2 is reasonable since, as already mentioned
in Section 2, |8, can be made arbitrarily small
according to the universal approximation theorem and &
1s the positive function.

By using Eq. (17) and Eq. (19), determining the
robustifying term g yields

,B=—-——w—sgn e’Pb ).
-y () (20)

By using Eq. (20), we obtain
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A= eTPb(5f +6, (ua + p - D+ e’ Pbf
E+8

)
=e"Pb(9, +6gua)+eTPb[1+ . :’g ]ﬁ

<|e"Pb||5, + 8,u, |+ eTPb[l + eigé ]ﬂ

1+ 5 -
S|eTPb||//—eTPbsgn(eTPb) 1i;;g v
<|e” Phly - |eTPb|i:—?}:t// 1)

=0.

Combining this result with Eq. (15) and using the
relations

- 1
0, =518, +lef -3 ;T @2)
~ Tiz12 1,2
egeg "Elegl zieg 4 23)
it can be seen that Eq. (12) becomes

V<——q|e| —eTPb[ ( f+a+[3)j

s, (%|ef| Lot )

L Glégr -l ) 24

At this point, it is necessary to explain why we
introduce & in the control input in Eq. (7). In most
practical applications, the controller must satisfy a
specific control authority, ie., the control input must
satisfy the constraint of the form

(25)

where « is a positive constant. The inequality in Eq.
(25) defines the control authority constraint by
constraining the magnitude of the control input (7).
From Eq. (7), it can be easily observed that we can
interpret the control saturation as & having the value of

|—-f"+cx+ﬂ|

£=—g+
g 7 (26)

while no saturation means ¢=(). Note that ¢ is a virtual
term assumed to have the value of Eq. (26) in the case

of input saturation. In the sequel, we will induce the
conditions under which the effect of the nonzero & (that
is, in the case of input saturation) can be compensated

for.
Take

q=2(q1 +q2) 27)

with ¢,,g>>0 . Then Eq. (24) becomes
V<—(qi+as e+l 2] | 7 | +1od +1B1)
o, (6 2 -t - 21 -
~(a+a )l +elel(c,|o, ]+ ¢ +ew)
_af(%|éf]2+%|e : 19;2)—%(% 5 [ gzj

< —(ql —ﬂer ~%’é,’2 _%&|5g|2 ~gulef +cc.lellp|
S

_&|0f|2 +G— e 9; : +012 (03 +c41//)2
2 2
(28)
where ¢, =|Pb|, ¢y;= 1%7 . Also used,
0< —-<1
Et+g (29)
|§f (x)| <c,
]ot| <g¢
1
[elc1 (¢ +c4W)SZ|e| +cl (e +c4l//) 30)

with ¢,, ¢3>0 being computable constants. Choose the

design constants ¢, and o, such that

1
‘I1>Z
22
GG
7% (31)
VP

Then V becomes
2
. 1 G, 1~ 2 ¢cC
(=g o I o520
+(£f£i_&]|gf|2+"_f
4q 2

<{u-1 ) (‘";;2— o -l

2 O'g
A5

2 O, .2
+7g|6g| +ci (e, +ew)

(32)

*|2

+ef (e + CAW)Z :




112 Stable Input-Constrained Neural-Net Controller for Uncertain Nonlinear Systems

Let
i
2 —_——
N G i B S
A’max (P) ’ / 2 4q2 ] £ ¢
o 2 O «|2
;L=7fef +7849g4 +cl (e tew). (33)

Then Eq. (33) can be written as

V<—cV+A. (34)

From Eq. (34), we have V<( provided that V) i/c.
Thus, we can prove the uniform ultimate boundedness of

V' with respect to the set

Q,. ={V(z):V§%}. -

The following theorem summarizes our main result.

Theorem 2. Consider the nonlinear system Eq. (5) and
assume that Assumptions 1 and 2 hold. The control law
of Eq. (7) together with the learning laws of Egs. (13)
and (14) guarantee that the Lyapunov function of Eq. (11)
is uniformly ultimately bounded with respect to the set
Q. defined by Eq. (35). From the definition of the
Lyapunov functtion of Eq. (11), it can be easily seen that
the same property holds for the signals |el,|d/] and
10!

Remark 1. Regardless of the magnitude of &, the
condition of Eq. (29) is always satisfied. Thus, the
stability of the closed-loop system is guaranteed as long
as the parameters ¢, and o, are selected such that the
condition of Eq. (31) holds. That is, the price paid for
nonzero ¢ is that the constants ¢, and o, must satisfy
the condition of Eq. (31). Note also that with the
appropriate choice of the parameters, the value of /¢
can be rendered to be arbitrarily small.

Remark 2. To prohibit g from being zero, we adopt
the update scheme for ¢, in [20]. That is, Eq. (36) is

used whenever an element 6 .,=¢

g 1% (PRt u—-00,) if e’ PHE u>20,0,
B 0 if € PhE u<0.0, (36)

where &£, is the /th component of £,.

4. Simulation Example

To illustrate the control procedure and performance, we
apply the proposed robust adaptive controller to control
the inverted pendulum to track a sinewave trajectory. The
dynamic equations of the system are given by [2]

X = X
2 .
gsin(x)— mix,” cos(x,)sin(x,) cos(x,)
. m,+m m.+m
X, = 5 + 5 u
l(i_mcos (xl)) l(i_mcos (%)
3 m+m 3 mo+m (37)

where x;= @ represents the angle of the pendulum, x,
represents the angular velocity, g=9.8 m/s? is the
acceleration due to gravity, m, is the mass of cart, m

is the mass of pole, [ is the half length of pole, and 4«
is the applied force (control). We choose
m.,=1kg, m=0.1kg, and /=0.5m in the
following simulations. We also choose the reference

signal y,( t)Z% sin(#) in the following simulations.
The design parameters are specified as follows. Let
k=2, k=1 (s0 that s*+Fks+k, is stable), and

q=10, then we have the Lyapunov equation (11) and
obtain

{5 3]

which is positive-definite with A, =2.9289. We also
choose ¢,=0.001 and »=0.1.

The compact set Q, is chosen to be 'xﬂﬁﬁﬁ for both

7=1,2. We have chosen the RBFNs as approximators
for unknown nolinearities whose approximation capability
has been proven in [5]. The radial basis functions for x
are described by

&(x)= exp(—,"_—ci,],i =1,--,25

207

0= % ci={(x, x)lx1€5,, %, S}, i1=1,---,25
S;={—-0.2r, —0.1z, 0, 0.1x, 0.2x},7=1,2.

The adaptation rate constants y, and y, are set to
2000 and 10, respectively, and 7y is chosen to be 0.1.
The initial 6%=0, 6°%=1.5 for all
k=1,-,25 where §°% and 6% denote the kth

element of the initial vector 4% and 6%, respectively,

values are
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that is, no a priori information for 6, and 0, is
known. The

assumed to  be initial  state 1S

x(0)=[~0.1 017.

timefseci

25 5 ra : ]é 5 o
timej sec
Fig. 1 In the case of ¢,=0.2,0,=0.5 without input
saturation: (a) the system output (line) and desired
output (dashed line) (b) control input

0155

: : : ; :
B 7 B g 10
time[sec]

Fig. 2 In the case of ¢,=0.2,6,~0.5 and occurring

input saturation with »=1.2: (a) the system
output (line) and desired output (dashed line) (b)
control input

time([sec]

[ 7 8 9 10

“o 1 2 3 4

5
time[sec]
Fig. 3 In the case of g,=4,0,=4.2 and occurring input

saturation with zz=1.2 : (a) the system output (line)
and desired output (dashed line) (b) control input

For comparison, we simulate the three controllers for
this inverted pendulam tracking problem. First, we use
the proposed controller with ¢,=0.2 (thus, ¢;=19.8),

o,=0.5 and no input saturation occurs. Secondly, we
use the same values for g, and o, as the former case,
and this does not satisfy the condition of Eq. (31) but

input saturation with u=1.2 occurs. The last simulation
is conducted using the same controller but with g, =4

(thus, g;=6), o,=4.2 and the same input saturation

occurs. It can be easily checked that they satisfy the
condition of Eq. (31). The system output, reference
output, and conirol input of the three controllers are
illustrated in Figures 1 through 3.

From the results, it can be inferred that the system
output tracks the desired output well with the third
controller, while the system with the second controller has
lost the stability.

5. Conclusions

In this paper, we apply MNNs to model uncertain or
ill-defined feedback linearizable nonlinear systems having
input saturation. Adaptive laws are developed to adjust
uncertain parameters that are linear in the output of the
neural networks. The proposed control input has an
additional term ( &) that can consider the input saturation
efficiently. Also, the proposed control input also contains
the robustifying control term that adaptively compensates
for the reconstruction errors. The adaptive laws and
control input are established to stabilize the closed-loop
system from the Lyapunov standpoint. It has been shown
that additional conditions on some design constants are
needed to guarantee the stability of the closed-loop
system under input constraint. Simulations for the
inverted pendulum system have demonstrated that the
proposed control architecture can maintain stability under
input saturation and provides satisfactory tracking
performance.
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