• 제목/요약/키워드: state feedback control

검색결과 1,063건 처리시간 0.03초

Adaptive Actuator Failure Compensation Designs for Linear Systems

  • Chen, Shuhao;Tao, Gang;Joshi, Suresh M.
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.1-14
    • /
    • 2004
  • This paper surveys some existing direct adaptive feedback control schemes for linear time-invariant systems with actuator failures characterized by the failure pattern that some inputs are stuck at some unknown fixed or varying values at unknown time instants, and applications of those schemes to aircraft flight control system models. Controller structures, plant-model matching conditions, and adaptive laws to update controller parameters are investigated for the following cases for continuous-time systems: state tracking using state feed-back, output tracking using state feedback, and output tracking using output feedback. In addition, a discrete-time output tracking design using output feedback is presented. Robustness of this design with respect to unmodeled dynamics and disturbances is addressed using a modified robust adaptive law.

비선형 궤환 선형화 기법을 사용한 자기부상 시스템의 DSP 제어기 구현 (Implementation of DSP Controller for Levitation of EMS System using Nonlinear Feedback Linearization)

  • 심형보;주성준;서진헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.268-270
    • /
    • 1993
  • The implementation of Nonlinear Feedback Linearization control for Electro-Magnetic Suspension system is presented. The controller using TMS320C31 DSP chip was proposed and the experiments were performed Control law for EMS system using feedback linearization is derived and implemented in the DSP. Some tests were constructed far experimental comparison between feedback linearization and classical state feedback The experimental results demonstrate that the feedback linearization controller shows bettor performance than that of the classical state feedback controller and it is robust with respect to disturbance and parameter variation, though some steady-state errors appear.

  • PDF

원점 복귀 가능한 차륜형 역진자 제어를 위한 확장 상태피드백 제어기 설계 (Design of an Augmented State Feedback Controller for a Wheeled Inverted Pendulum Returning to the Origin)

  • 이세한
    • 로봇학회논문지
    • /
    • 제6권4호
    • /
    • pp.317-322
    • /
    • 2011
  • An augmented state feedback controller for a Wheeled Inverted Pendulum (WIP) is proposed in this research. The augmented state feedback controller is able to keep the WIP returning to the origin. Generally, the WIP has both stable and unstable equilibrium points. To keep the WIP over the unstable equilibrium point, the WIP consistently is being controlled. A simple state feedback controller is letting the WIP out of the origin when the center of gravity of the WIP locates out of the schematic center line. In some case of applications, it may not be desirable that the WIP is drifting out of the initial location. The proposed augmented state feedback controller is able to keep the WIP at the initial location whether its center of gravity lies out of the center line or not. Numerical simulations are carried out to show the validation of the augmented sated feedback controller.

Vibration Suppression Control for Mechanical Transfer Systems by Jerk Reduction

  • Hoshijima, Kohta;Ikeda, Masao
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.614-620
    • /
    • 2007
  • This paper considers vibration suppression of a mechanical transfer system, where the work is connected with the hand flexibly. We adopt the idea of jerk reduction of the hand. From the equation of motion, we first derive a state equation including the jerk and acceleration of the hand, but excluding the displacement and velocity of the work. Then, we design optimal state feedback for a suitable cost function, and show by simulation that jerk reduction of the hand is effective for vibration suppression of the work and improvement of the settling time. Since state feedback including the jerk and acceleration is not practical, we propose a computation method for optimal feedback using displacements and velocities in the state only.

퍼지 스위칭 모드를 이용한 하이브리드 제어기의 설계 (Design of the Hybrid Controller using the Fuzzy Switching Mode)

  • 최창호;임화영
    • 한국지능시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.260-269
    • /
    • 2000
  • The fuzzy and state-feedback control systems have been applied in various areas from non-linear to linear systems. A Fuzzy controller is endowed with control rules and membership function that are constructed on the knowledge of expert, as like intuition and experience. but It is very difficult to obtain the exact values which are the membership function and consequent parameters. though apply back-propagation algorithm to the system, the convergence time a much. Besides, the state-feedback system is most widely used in industry due to its simple control structure and easily able to design the controller. but it is weak in complex system of higher degree and non-linear. In this paper presents the design of a fuzzy switching mode, it these two controllers work at different operation conditions, the advantages of both controller can be retained and the disadvantages can be removed. Between the Fuzzy and the State-feedback controlles, the good outputs are selected by the switching mode. Moreover it is powerful in complex system of higher degree and non-linear. In these sense compared with the state-feedback controller, the performance of the proposed controller was improvedin the section of linearization.

  • PDF

단일 구동부를 갖는 2축 도립진자의 자세제어 (Posture control of double inverted pendulum with a single actuator)

  • 이건영
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.577-584
    • /
    • 1999
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link of the target pendulum system is hinged on the plate to free for rotation in the specified range($10^{\cire}$) on the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though it has no actuator in lower hinge. The algorithm to control the inverted pendulum consists of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a nonlinear feedback compensator for the rest of the range. Conventional state feedback control is employed, and the fuzzy controller is responsible for generating the reference joint angle of the upper link for the nonlinear feedback compensator which drives a DC motor to generate an indirect torque to the lower joint. As a result, we can get the upright posture of the proposed pendulum system. Simulations and experiments are conducted to show the validity of the proposed controller.

  • PDF

Digital State Feedback Current Control using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.213-221
    • /
    • 2007
  • A digital state feedback control method for the current mode control of DC-DC converters is proposed in this paper. This approach can precisely achieve interleaved current sharing among the converter modules. As the controller design and system analysis are performed in the time domain, the proposed method can easily satisfy the required converter specification by using the pole placement technique. The digital state feedback controller in the continuous and discrete time domain is derived for the robust tracking control. For the verification of the proposed control scheme, a parallel module bi-directional converter in a prototype 42V/14V hybrid automotive power system, which is a design example in the continuous time domain, and a parallel module buck converter, which is a design example in the discrete time domain, are implemented using a TMS320F2812 digital signal processor (DSP).

웨이블릿 기반 극점 배치 기법에 의한 선형 시스템 해석 (Linear system analysis via wavelet-based pole assignment)

  • 김범수;심일주
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1434-1439
    • /
    • 2008
  • Numerical methods for solving the state feedback control problem of linear time invariant system are presented in this paper. The methods are based on Haar wavelet approximation. The properties of Haar wavelet are first presented. The operational matrix of integration and its inverse matrix are then utilized to reduce the state feedback control problem to the solution of algebraic matrix equations. The proposed methods reduce the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity and applicability of the proposed methods.

Structure-Control Combined Optimal Design of 3-D Truss Structure Considering Intial State and Feedback Gain

  • Park, Jung-Hyen
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.66-72
    • /
    • 2003
  • This paper proposes an optimum, problematic design for structural and control systems, taking a 3-D truss structure as an example. The structure is subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback H$_{\infty}$ controller which suppress the effects of disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. For the control objective, we consider two types of performance indices, The first function represents the effect of the initial loads. The second function is the norm of the feedback gain, These objective functions are in conflict with each other but are transformed into one control objective by the weighting method. The structural objectives is treated as the constraint, By introducing the second control objective which considers the magnitude of the feedback gain, we can create a design to model errors.

출력궤환 가변구조 제어계의 설계에 관한 연구 (Design of an Output Feedback Variable Structure Control System)

  • 이기상;조동식
    • 대한전기학회논문지
    • /
    • 제41권8호
    • /
    • pp.883-892
    • /
    • 1992
  • In order to remove the assumption of full state availability which is one of the major difficulties with the practical realization of variable structure control system (VSCS), an output feedback variable structure control scheme for multivariable systems is proposed. The proposed output feedback VSCS is composed of a switching surfaces with dynamic structure and a new output feedback control input that can be constructed by using conventional output feedback control input design methodologies. With the proposed scheme, the practical realization of VSCS for the systems with unmeasurable states and for high order systems that conventional schemes cannot be applied is possible. Simulation results show that proposed scheme is a viable method to achieve the desired control performance, for example, good transient response, robustness against process parameter variations and external disturbance without measuring all the state variables.