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Vibration Suppression Control for Mechanical Transfer Systems
by Jerk Reduction

Kohta Heshijima and Masao Ikeda

Abstract: This paper considers vibration suppression of a mechanical transfer system, where the
work is connected with the hand flexibly. We adopt the idea of jerk reduction of the hand. From
the equation of motion, we first derive a state equation including the jerk and acceleration of the
hand, but excluding the displacement and velocity of the work. Then, we design optimal state
feedback for a suitable cost function, and show by simulation that jerk reduction of the hand is
effective for vibration suppression of the work and improvement of the settling time. Since state
feedback including the jerk and acceleration is not practical, we propose a computation method
for optimal feedback using displacements and velocities in the state only.

Keywords: Jerk reduction, mechanical transfer system, motion control, optimal control,

vibration control.

1. INTRODUCTION

In manufacturing processes, improvement of
productivity is commonly required. A way to achieve
this requirement, large-scale products such as liquid
crystal panels of 8G (the eight generation) are desired,
for which we need to run big manufacturing machines
fast. However, fast movement of big machines usually
generates vibration and then deteriorate the position-
ing and settling time. Therefore, for improvement of
productivity, we need to develop a control strategy for
vibration suppression.

In this paper, we treat a transfer machine which is
widely used in manufacturing processes. We represent
the machine and a work on it as a multi-mass system
connected by springs and dampers. It is composed of a
driven part, intermediate parts, a hand, and a work.
We assume that the hand holds the work by a spring
and a damper. We adopt the idea of jerk reduction
[1,2] of the hand for vibration suppression of the work
and improvement of the settling time.

To design a control law for jerk reduction of the
hand, we first derive a state equation including the
jerk and acceleration of the hand, but excluding the
displacement and velocity of the work, from the
equation of motion. Then, we apply the Linear
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Quadratic Control [3] to the state equation with a
performance index evaluating the jerk of the hand,
and obtain optimal state feedback. By simulation, we
show that in this way, we can suppress the vibration of
the work and improve the settling time.

Although the optimal control law can be obtained,
it is not practical since the state feedback contains the
jerk of the hand, which cannot be measured directly. It
may be also desired not to use an accelerometer for
cost reduction. For these reasons, we consider a
feedback control law excluding the jerk, or jerk and
acceleration, of the hand and propose an iterative
method for computing such control laws. In this case
as well, we show that by considering a performance
index evaluating the jerk of the hand, we can suppress
the vibration of the work and improve the settling
time.

2. SYSTEM DESCRIPTION

Let us consider a mechanical system of Fig. 1. The

system is composed of masses My, My,
which are connected by springs k,--,k, and

dampers d,-:-,d

dp, and a mass m,, connected to
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Fig. 1. A mechanical transfer system.
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the mass my, by the spring k, and damper d,. This
multi-mass system is a model of a transfer machine
and a work on it, where the force u drives the mass m,
and the hand m;, holds the work m,, flexibly.

2.1. Equation of motion

To describe this system by the equation of motion,
we denote the displacement of the mass m, by g¢,,
where * means the subscript 1,---,p, h, or w.
For individual masses, the displacements ¢, =0 are

defined as stationary points where the springs are
neither stretched nor compressed. Then, the system is
described by

Mi(£)+ Dg(1) + Kq(t) + gd , {g T 4(1) - 4,(1)}
+ gk, {g"q(t) - g,(O} = Lu(r),
MG () +d, 1G,(0) — 8 4O} +dy {d,(0 - 4,0}
+hpdan(®) - 8" a0} + ky g, (1) - 4,()} =0,
My 0+ it (O = 4,0} + ky {0, () — 4, (1)) = 0,

(1)
where
m 0
a0=[a@® — 0], M= |
0 m,
(4 -4, 0 ]
—dy di+d,
D= R . ,
dy,+d,, —d,|
0 ~dpy dypy
I 0 |
-k Ktk
K= R ,
by +k, —k,
0 Kot Ry

g0 - 0 1]'eRe,

1 0 - 0]'eR”.

This model can be used also in the case where the
work is a vessel for liquid [4-6].

To see the mechanism of vibration of the work, we
compute the Laplace transform of (1) as

Zn(s) ms) 0 e [¢
70(8) 2(8) zp3(5) || 4,(5) | =] O |acs),
0 zp(s) z33(8) || g,(s)] | O

~

2)

where §(s), §,(s), #(s) are the Laplace transforms
of ¢(t), ¢.(t), u(t), and

Zy1(s)=Ms> + Ds + K, z15(s) =—d ,g5 — k .2,

29y (s) = my,s® +(d, +dj)s + (k, +ky),

Zy3(8) =—d),s —kp,235(s5) = mws2 +d,s +ky,

D=D+gd,g" K=K-+gk,g".

By multiply this equation by

I 0 0
0 0 =z

from the left, we obtain

211 ) 01 g ?
T . .
3T Imzazay O G, (=04, 4
0 apz 1Lw] L0

where “(s)” has been omitted for simplicity. We see
from the bottom equation

A —1 A
4., ="2232334,, &)

that the displacement g, of the work is the output of a
second order vibration system whose input is the
displacement g, of the hand. Therefore, rapid changes
of gy, even if the magnitude would be small, contain
frequency components of a wide range and stimulate
the vibration mode of g,.. To avoid this phenomenon,

we suppose that reduction of the jerk q,(;) of the
hand is effective.

2.2. State equation

In designing a control system, it is common to
transform (1) to a state equation with the state variable
composed of the displacements and velocities of the
p+2 masses in the system. In this paper, we derive

another state equation to evaluate the jerk of the hand,
in which the state variable contains the jerk qf) and
of the hand instead of the

displacement ¢,, and velocity ¢, of the work. In

acceleration ¢,

this way, we describe the system dynamics using the
variables of the transfer machine only, that is, without
the variables of the work.

The behavior of the variables of the transfer
machine is written by the top two equations of (4) as

V4 z 7 4
Z33ziy  Z;Z33—253 )| 4p| |0
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and the coefficient matrix of the left side is expanded
as

0 0 3
+ §
—mwa’pgT mydy,+md ,+m,d),

M
+
_’nwkpgT - dhdpgT
0 , D
Mk + myk, +myk, +dyd,
| D -d,g
+ P N

—dik,g’ —d g’ dik,+d K,

K —k,g

kg’ kok, |

To derive the unorthodox state equation, we multiply
(7) by

1 0
T= ,
Gys+a, 1

oy = mwdpgTM_l, )]

ay = (mwlcpgT + dhdpgT - (xlB)M_l

from the left to obtain

0 0
S4
‘:0 mwmh}
0 0 s
+ S
_0 mwdh +mwdp +mhdh

M 0 )
+
0 myky +myk, +myk, +dyd, —oyd,g |

D
~dyk,g" —d k,g" + K +a,D

_dpg
N
dyk, +d o, — kg —0pd g

K —k,g
+ T — ,
—kpk,g" +ay K kyk, —ask,g
)
where the (2,1) blocks of the coefficient matrices for

s°> and s are zero. We also multiply the coefficient

matrix of the right side of (6) by 7' of (8) to obtain

SR R S

These equations in s domain imply that dynamics of
the system can be described by two differential
equations, where the first one is with ¢, ¢, and ¢,

and the second one is with g, G, G, q,(f), q§,4)

and g, ¢. Then, we can describe the dynamics in
time domain by a state equation with the state variable

T
. . .. 3
x=[q" @ §" @y 0] (11)
as s
X = Ax +bu + by, (12)
where
o 0 I 0 0 0]
0 0 0 1 0 0
P A4 ap Ay ay 00
o o o0 o0 1 o7
0 0 0 0 0 1

|91 %2 963 Y64 965 Y6 |
b0 0 55 0 0 e »
B=0 0 0 0 0 by,
A =-MK, ap=M"k,g,
A3=-M"'D, ay=Md,g,
ag = —mv_l,lmzl(—khkpgT +0,K),
agy = —m, my,! (kyk,, — 02k, 8),
agy = —my,'my, (~dyk,g" - dk,g" +0,K +0,D),
Qg4 = _m»_vlm;l(dhkp +dpky, - alkpg —02d,8),
ags = —m,'my, (mky, +mk, +myk, +dyd , - a,d,.g),
ags =-mj, (d) +dp)_ml;1dh’
by=M"Y,  bg=mylmy'oyt,
by = m;,lm,:lalﬁ.

This state equation may look unusual since it

contains a term of the input derivative # However,
when p>2, that is, when there is at least one
intermediate mass between the driven part and the
hand, by, =0 and then b, =0. Therefore, it is a

standard state equation. In the present paper, we
consider this case only. The case p=1 has been

dealt with in [7].



Vibration Suppression Control for Mechanical Transfer Systems by Jerk Reduction 617

3. OPTIMAL CONTROL LAW

To show that reduction of the jerk of the hand is
effective for vibration suppression of the work and
improvement of the settling time, we apply optimal
regulator theory [3] to the state equation

%= Ax+bu (13)

with several performance indices. In this section, we
consider an example of p=2 for simplicity of
discussions. The cases p>3 can be treated in the
same way.

When p=2, the state is an eight dimensional
vector as

x=[q1 @ 49n 4 42 9n Gn q,‘f)f (14)
For computation, we use the parameters my = my
=my, =10, m,=0.1, dy=d, =0.1, d, =0.05, k; =
ky=5.0, and k, =1.0.

We consider a typical behavior of transfer systems.
That is, the initial state is a stationary one as

%=[-1 -1 -1 0 0 0 0 0] (15)
and the terminal state is

x,=[0 00 0 00 0 o], (16)
where the moving distance is normalized as 1.

3.1. Performance indices
We consider a performance index

_[®(.T 2
J= J.O (y Oy +ru ]dt, 17)
where
y=Cx (18)

is the output of the system. The coefficient matrix C
is determined by the variables which we want to
evaluate. In (17), Q and r are weights to take the

balance of evaluation of state and input variables.

We consider the following four cases, where the
output variables are indicated, which are evaluated
together with the input.

Case 1: displacement of hand

G=[0 0100 0 0 0],

(19)
0, =1.0, n =0.0056.
Case 2: displacement and velocity of hand
001 0O0O0O0CO
C = , 20)
000 0O01O0T0

10 0
- . 1y =0.025.
< { 0 0.204} g

Case 3: displacement and acceleration of hand

00100O0O00O0
C3 = N
000 0O0O0T10O0

21
1.0 0
- , 75 =0.077.
= {0 0.31} ’
Case 4: displacement and jerk of hand
001 00O0O0O
*loooooo0 o0 1f
« (22)

1.0 0
- , 7y =0227.
O [o 0.69} !

The choices of the weights O, and r, are explained
later.

3.2. Optimal control law
Since the pair (A4,8;) is stabilizable and the pairs

(G;,4), i=1,---,4, are observable, the optimal control

law is given by the positive definite solution F of

the Riccati equation

A'R+RA-Fbi W B+ClOC =0 (23)
as

U= —ri_]blTPl-x. (24)
The computed optimal gains

fi=-r"'0' P, (25)

are:
Case 1: displacement of hand

fi=-[10.1 3.11 0.179 4.59 1.26
10.8 0.162 0.832].
Case 2: displacement and velocity of hand
fo=-1632 245 -244 360 1.14
532 -0.322 0412].
Case 3: displacement and acceleration of hand
f=-7.15 184 -539 377 0.815
234 -1.44 0.275].
Case 4: displacement and jerk of hand
fy=-[142 1.38 -13.5 529 0.803
-0.857 -5.96 0.327].

Now, we denote the total cost and the contribution
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of the input in the performance index by ¢; and ¢/,
respectively, in cases i=1,2,3,4. We also denote
contributions of displacement, velocity, acceleration

and jerk of the hand by ¢}, ¢f, and ¢ in cases
i=2,3,4. When we apply the above feedback gains
for the initial state x; of (15), the ratios of the
contributions are

Case1: cf'/c; =8.42x1072,

Case2: ci/c, =8.42x1072, ch/c, =8.42x1072,

Case3: cl/c; =842x1072, cflc; =8.41x1072,

Case 4: clj/c, =8.43x1072, ¢J/c, =8.42x1072,
which mean that the weights O, and # in (19)-(22)
are chosen so that the ratio of the input contribution to

the total cost is approximately 8.4x1072 in every
case and the velocity, acceleration, or jerk
contributions to the total cost are approximately

8.4x1072 in cases i=234.

3.3. Simulation results
Figs. 2 and 3 respectively show the responses of the
hand and work in the four cases. In Fig. 2, the

0.6 case 1: displacement ' — ]
case 2: displacement and velocity -~
04 case 3: displacement and acceleration ... 1

case 4: displacement and jerk —_

15

Fig. 2. Responses of the displacement g, of the hand.

case 1 — |
case 2 -m-
case 3 e

5 ; 10 13
time

Fig. 3. Responses of the displacement g,, of the work.

10 15

time

Fig. 4. Responses of the input u.

response of case 3 is the best such that the overshoot
is small, no vibration exists, and the settling time is
the shortest. However, in Fig. 3, the response of case 3
is not so. The response of case 4 is the best in all
aspects. Then, we see that inclusion of the jerk of the
hand in the performance index is effective for
suppression of vibration of the work and improvement
of the settling time.

Moreover, we see from Fig. 4 that the input in case
4 is relatively small and smooth. This is good for the
actuator. ‘

4. PRACTICAL CONTROL LAW

The optimal control law obtained in the previous
section is state feedback, which needs the information
of jerk and acceleration of the hand. However, there is
no sensor which can measure the jerk and, in actual
situations, it may be desired not to use an
accelerometer for cost reduction. For these reasons,
we propose feedback control laws which use only the
displacements and velocities of the masses in the
transfer machine or those plus the acceleration of the
hand. This means that we consider state feedback
gains 7 under the structural constraints where the
7th and 8th elements are 0 or the 8th element is 0.

Optimal gains with such structural constraints
cannot be obtained analytically and depend on the
initial state. So, we present an iterative computation
method. We consider the performance index with
Cy, Q4 and ry of (22) for case 4, by which we can
expect reduction of the jerk of the hand and, as a
result, vibration suppression of the work. We deal
with two structural constraints as

Case 4a: the 8th element is 0 in the feedback

gain f.

Case 4b: the 7th and 8th elements are 0 in the
feedback gain £

When we apply stabilizing feedback control
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u=fx (26)

to the system (13) with the initial state x,, the value
of the performance index is

J= xgﬁxo, 27)

where P is the positive definite solution of the
Liapunov equation

A+ TP+ P(A+b ) +CToC+rf 7 =0.

(28)
Therefore, the problem we should consider is

mjin xOT Pxg . 29

To solve this problem using an existing software
which is good at treating matrix inequalities rather
than equalities, we use the Liapunov inequality

(A+bf) P+ P(A+b ) +CTQC+r7TF <0

(30)
the minimum solution of which is the solution of the
Liapunov equation (28) [8]. Then, we solve

min xg ]3x0 (31)

s>

under (30) instead of (29) under (28).
Now, we consider small perturbations f &

satisfying the same structural constraint as 7, and

f’A for f and P, respectively, so that we write
(30) as

{A+b(f+F )N (P+BY)
+(P+ B A+ (f+ F} (32)
+CTOC+r(f+ F ) (F+ 79 <0.
We assume that f 5 and P, are small enough and

we can ignore their squares and products. Then, (32)
becomes a linear matrix inequality

,ZTPA+I3A2+I5}8+(5}8)T+Q<O, (33)
where
A=A+bf, b=DBb+r7",
O=7"P+Pa+CoC+r7'f.
We note that “<” in (32) is replaced with “<” in
(33) so that a solution set (f, P,) of (33) satisfies

(32) if f; and P, are sufficiently small. Thus, if
(33) has a solution set (f 8,I3A) such that

X3 Pyxo <0 for xo of (15), we can expect that a

stabilizing feedback gain f + fa exists which

reduces xg Pxy. To compute such a solution set, we
introduce an upper bound A of the change rate as

wnT  ~
f L.
’; 75 >0, —MP<BP, <\P (34)
Fs I
and consider the optimization problem
min xg Pyxg . (35)
Sofa

To start the iteration, we need an initial stabilizing
feedback gain f o Since the optimal solution f* to

(31) depends on the initial value f o> We propose to
use many /}0' That is, we randomly generate many

7 under the structural constraints of cases 4a or 4b,

and use them as f o 1if the closed-loop system

matrices A+ 5 f are stable. We note that the

unstable mode of the mechanical system of Fig. 1 is
only the rigid mode and can be stabilized by negative
feedback of the displacement and velocity of the
driven mass mj. Such feedback makes the damping
and stiffness matrices positive definite in the closed-
loop system and this fact ensures stability of the
mechanical system [9]. Therefore, the existence of a
stabilizing gain is guaranteed.

The best gains obtained so far for the present
example are:

Case 4a: the 8th element is 0 in the feedback gain

f

f4a=-1163 0939 -149 629 0.908
-1.55 -6.47 0].
Case 4b: the 7th and 8th elements are 0 in f
f4b=[—23.1 17.5 0944 -19.2 442 2.31 0 0].

0.6 ' " cased — |
case 4a -
0.4+t case 4b .. -

time
Fig. 5. Responses of the displacement ¢, of the
work.



620 Kohta Hoshijima and Masac tkeda

. 15
time

Fig. 6. Responses of the input .

When we apply these gains, the values of the
performance index are: case 4a: 2.500, case 4b: 2.600
while it is 2.496 in case 4. The responses of the
displacement of the work and the input are shown in
Figs. 5 and 6, respectively. We see that a good
response has been obtained even in case 4b and
conclude that sufficient reduction of the jerk of the
hand has been achieved by feedback of displacements
and velocities in the state only.

5. CONCLUSIONS

This paper has considered a vibration suppression
problem for a mechanical transfer system, where the
work is connected with the hand of a transfer machine
by a spring and a damper. A feedback control law for
reduction of the jerk of the hand has been proposed to
suppress the vibration of the work. A state equation
including the jerk and acceleration of the hand has
been introduced to compute a state feedback gain
using the Linear Quadratic Control theory. For
practical applications, an iterative computation
method has been presented for optimal feedback using
displacements and velocities of the transfer machine
only. Simulation results have shown that reduction of
the jerk of the hand is effective for vibration
suppression of the work and improvement of the
settling time.
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