1 |
C. F. Chen and C. H. Hsiao, "Haar wavelet method for solving lumped and distributed-parameter systems", IEE Proc. Control Theory Appl. Vol. 144, pp. 87-94, 1997
DOI
ScienceOn
|
2 |
R.A. Horn and C.R. Johnson, "Matrix Analysis", New York, Cambridge Univ. Press, 1985
|
3 |
J. Brewer, "Kronecker products and matrix calculus in system theory", IEEE Trans. on Circuits and Systems, Vol. 25, pp. 772-781, 1978
DOI
|
4 |
R.S. Stankovic and B.J. Falkowski, "The Haar wavelet transform: its status and achievements", Computers and Electrical Engineering, Vol. 29, No. 1, pp. 25-44, 2003
DOI
ScienceOn
|
5 |
M. Ohkita and Y. Kobayashi, "An application of rationalized Haar functions to solution of linear differential equations". IEEE Trans. Circuits Systems I. Fundam. Theory Appl. Vol. 9, pp. 853-862, 1986
|
6 |
B.S. Kim, I.J. Shim, B.K. Choi and J.H. Jeong, "Wavelet based control for linear systems via reduced order Sylvester equation", The 3rd Int. Conf. on Cooling and Heating Techn., pp.239-244, 2007
|
7 |
A. Haar, "Zur Theorie der orthogonaler Funktionensysteme", Math. Ann. Vol. 69, pp. 331-371, 1910
DOI
|
8 |
K. Maleknejad, R. Mollapourasl, M. Alizadeh, "Numerical solution of Volterra type integral equation of the first kind with wavelet basis", Applied Math. and Comp., Vol. 194, pp. 400-405, 2007
DOI
ScienceOn
|
9 |
C. H. Hsiao and W. J. Wang, "State analysis and parameter estimation of bilinear systems via Haar wavelets", IEEE Trans. Circuits Systems I. Fundam. Theory Appl. Vol. 47, pp. 246-250, 2000
DOI
ScienceOn
|