• Title/Summary/Keyword: starlike function

Search Result 89, Processing Time 0.028 seconds

ON SOME DIFFERENTIAL SUBORDINATION INVOLVING THE BESSEL-STRUVE KERNEL FUNCTION

  • Al-Dhuain, Mohammed;Mondal, Saiful R.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.445-458
    • /
    • 2018
  • In this article we study the inclusion properties of the Bessel-Struve kernel functions in the Janowski class. In particular, we find the conditions for which the Bessel-Struve kernel functions maps the unit disk to right half plane. Some open problems with this aspect are also given. The third order differential subordination involving the Bessel-Struve kernel is also considered. The results are derived by defining suitable classes of admissible functions. One of the recurrence relation of the Bessel-Struve kernel play an important role to derive the main results.

ON CERTAIN GENERALIZED q-INTEGRAL OPERATORS OF ANALYTIC FUNCTIONS

  • PUROHIT, SUNIL DUTT;SELVAKUMARAN, KUPPATHAI APPASAMY
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1805-1818
    • /
    • 2015
  • In this article, we first consider a linear multiplier fractional q-differintegral operator and then use it to define new subclasses of p-valent analytic functions in the open unit disk U. An attempt has also been made to obtain two new q-integral operators and study their sufficient conditions on some classes of analytic functions. We also point out that the operators and classes presented here, being of general character, are easily reducible to yield many diverse new and known operators and function classes.

THE FEKETE-SZEGÖ INEQUALITY FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION BETWEEN GENERALIZED AL-OBOUDI DIFFERENTIAL OPERATOR AND SRIVASTAVA-ATTIYA INTEGRAL OPERATOR

  • Challab, K.A.;Darus, M.;Ghanim, F.
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.191-214
    • /
    • 2018
  • The aim of this paper is to investigate the Fekete $Szeg{\ddot{o}}$ inequality for subclass of analytic functions defined by convolution between generalized Al-Oboudi differential operator and Srivastava-Attiya integral operator. Further, application to fractional derivatives are also given.

HYPERGEOMETRIC DISTRIBUTION SERIES AND ITS APPLICATION OF CERTAIN CLASS OF ANALYTIC FUNCTIONS BASED ON SPECIAL FUNCTIONS

  • Murugusundaramoorthy, Gangadharan;Porwal, Saurabh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.671-684
    • /
    • 2021
  • The tenacity of the current paper is to find connections between various subclasses of analytic univalent functions by applying certain convolution operator involving generalized hypergeometric distribution series. To be more specific, we examine such connections with the classes of analytic univalent functions k - 𝓤𝓒𝓥* (𝛽), k - 𝓢*p (𝛽), 𝓡 (𝛽), 𝓡𝜏 (A, B), k - 𝓟𝓤𝓒𝓥* (𝛽) and k - 𝓟𝓢*p (𝛽) in the open unit disc 𝕌.

NEW SUBCLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS ASSOCIATED WITH HYPERGEOMETRIC FUNCTION

  • Khadr, Mohamed A.;Ali, Ahmed M.;Ghanim, F.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.553-563
    • /
    • 2021
  • As hypergeometric meromorphic multivalent functions of the form $$L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)=\frac{1}{{\zeta}^{\rho}}+{\sum\limits_{{\kappa}=0}^{\infty}}{\frac{(\varpi)_{{\kappa}+2}}{{(\sigma)_{{\kappa}+2}}}}\;{\cdot}\;{\frac{({\rho}-({\kappa}+2{\rho})t)}{{\rho}}}{\alpha}_{\kappa}+_{\rho}{\zeta}^{{\kappa}+{\rho}}$$ contains a new subclass in the punctured unit disk ${\sum_{{\varpi},{\sigma}}^{S,D}}(t,{\kappa},{\rho})$ for -1 ≤ D < S ≤ 1, this paper aims to determine sufficient conditions, distortion properties and radii of starlikeness and convexity for functions in the subclass $L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)$.

ON INTEGRAL MEANS OF DERIVATIVES OF UNIVALENT FUNCTIONS

  • Elhosh, M.M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.13-17
    • /
    • 1987
  • Let S denote the class of nivalent functions normalized so that f(0)=f'(0)-1=0 in vertical bar z vertical bar <1. Let $S_{\alpha}$$^{*}$, -.pi./2<.alpha.<.pi./2, denote the subclass of S that satisfies Re $e^{i{\alpha}}$zf'(z)/f(z).geq.0 in vertical bar z vertical bar <1; then f is called .alpha.-spiral-like and the case .alpha.=0 is the class of normalized starlike functions [6, pp.52]. Let T denote the class of functions f normalized as above and satisfying Im z[Im f(z)]..geq.0 in vertical bar z vertical bar <1; then f is called typically real and T contains those functions of S whose coefficients are real [6, pp.55]. Also, in view of [6, pp.231], let B(.lambda.) be the class of function normalized as above and map vertical bar z vertical bar <1 onto the complement of an arc with radial angle .lambda.(0<.lambda.<.pi./2). The radial angle is meant to be the angle between the tangent and radial vectors to the arc. This note includes a sharp version for Corollary 1 of [2] when f.mem. $S_{\alpha}$$^{*}$ as well as a logarithmic coefficient estimate.nt estimate.

  • PDF

T-NEIGHBORHOODS IN VARIOUS CLASSES OF ANALYTIC FUNCTIONS

  • Shams, Saeid;Ebadian, Ali;Sayadiazar, Mahta;Sokol, Janusz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.659-666
    • /
    • 2014
  • Let $\mathcal{A}$ be the class of analytic functions f in the open unit disk $\mathbb{U}$={z : ${\mid}z{\mid}$ < 1} with the normalization conditions $f(0)=f^{\prime}(0)-1=0$. If $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ and ${\delta}$ > 0 are given, then the $T_{\delta}$-neighborhood of the function f is defined as $$TN_{\delta}(f)\{g(z)=z+\sum_{n=2}^{\infty}b_nz^n{\in}\mathcal{A}:\sum_{n=2}^{\infty}T_n{\mid}a_n-b_n{\mid}{\leq}{\delta}\}$$, where $T=\{T_n\}_{n=2}^{\infty}$ is a sequence of positive numbers. In the present paper we investigate some problems concerning $T_{\delta}$-neighborhoods of function in various classes of analytic functions with $T=\{2^{-n}/n^2\}_{n=2}^{\infty}$. We also find bounds for $^{\delta}^*_T(A,B)$ defined by $$^{\delta}^*_T(A,B)=jnf\{{\delta}&gt;0:B{\subset}TN_{\delta}(f)\;for\;all\;f{\in}A\}$$ where A, B are given subsets of $\mathcal{A}$.

Fekete-Szegö Problem for a Generalized Subclass of Analytic Functions

  • Orhan, Halit;Yagmur, Nihat;Caglar, Murat
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.1
    • /
    • pp.13-23
    • /
    • 2013
  • In this present work, the authors obtain Fekete-Szeg$\ddot{o}$ inequality for certain normalized analytic function $f(z)$ defined on the open unit disk for which $$\frac{{\lambda}{\beta}z^3(L(a,c)f(z))^{{\prime}{\prime}{\prime}}+(2{\lambda}{\beta}+{\lambda}-{\beta})z^2(L(a,c)f(z))^{{\prime}{\prime}}+z(L(a,c)f(z))^{{\prime}}}{{\lambda}{\beta}z^2(L(a,c)f(z))^{{\prime}{\prime}}+({\lambda}-{\beta})z(L(a,c)f(z))^{\prime}+(1-{\lambda}+{\beta})(L(a,c)f(z))}\;(0{\leq}{\beta}{\leq}{\lambda}{\leq}1)$$ lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by Hadamard product (or convolution) are given. As a special case of this result, Fekete-Szeg$\ddot{o}$ inequality for a class of functions defined through fractional derivatives are obtained.

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • Honam Mathematical Journal
    • /
    • v.44 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.