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T -NEIGHBORHOODS IN VARIOUS CLASSES

OF ANALYTIC FUNCTIONS

Saeid Shams, Ali Ebadian, Mahta Sayadiazar, and Janusz Sokó l

Abstract. Let A be the class of analytic functions f in the open unit disk
U = {z : |z| < 1} with the normalization conditions f(0) = f ′(0) − 1 = 0.
If f(z) = z +

∑∞
n=2 anz

n and δ > 0 are given, then the Tδ-neighborhood
of the function f is defined as

TNδ(f) =

{

g(z) = z +
∞
∑

n=2

bnz
n ∈ A :

∞
∑

n=2

Tn|an − bn| ≤ δ

}

,

where T = {Tn}∞n=2 is a sequence of positive numbers. In the present
paper we investigate some problems concerning Tδ-neighborhoods of func-
tions in various classes of analytic functions with T =

{

2−n/n2
}∞

n=2
. We

also find bounds for δ∗
T

(A,B) defined by

δ∗T (A,B) = inf {δ > 0 : B ⊂ TNδ(f) for all f ∈ A} ,

where A, B are given subsets of A.

1. Introduction

Let A denote the class of analytic functions f in the open unit disk U =
{z : |z| < 1} with the normalization conditions f(0) = f ′(0) − 1 = 0. If
f(z) = z +

∑∞
n=2 anz

n, then the Tδ-neighborhood of the function f is defined
as

(1.1) TNδ(f) =

{

g(z) = z +

∞
∑

n=2

bnz
n ∈ A :

∞
∑

n=2

Tn|an − bn| ≤ δ

}

,

where δ is a positive number and T = {Tn}∞n=2 is a sequence of positive num-
bers. St. Ruscheweyh in [14] considered T = {n}∞n=2 and showed that if f ∈ C,
then TN1/4(f) ⊂ S∗, where C,S∗ denote the well known classes of convex
and starlike functions, respectively. In [4, 5, 6, 7, 10, 11, 12, 17, 18] other au-
thors investigated some interesting results concerning neighborhoods of several
classes of analytic functions. Some of the relations between the neighborhoods
for a certain class of analytic functions was described by S. Shams et al. [15].
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Also U. Bednarz and J. Sokó l in [7] considered T = { 1
n2(n−1)}∞n=2 and investi-

gated Tδ-neighborhood for various subclasses of analytic functions. Motivated
by the above results, we consider in this paper Tδ-neighborhood (1.1) with
T = {2−nn−2}∞n=2. We use this sequence because it is sufficiently strongly
convergent to 0, which is necessary for the series considered here to be con-
vergent. Notice that

∑∞
n=1 2−nn−2 = π2/12 − (log 2)2/2 and it is the value of

dilogarithm at 1/2, [13].
The convolution or Hadamard product of the functions f and g of the form

f(z) = z +
∞
∑

n=2

anz
n, g(z) = z +

∞
∑

n=2

bnz
n, |z| < 1,

is defined by

(f ∗ g)(z) = z +

∞
∑

n=2

anbnz
n.

Definition 1.1 ([2]). Let us consider the functions f that are meromorphic and
univalent in U, holomorphic at 0 and have the expansion f(z) = z+

∑∞
n=2 anz

n.
If, in addition, the complement of f(U) with respect to C is convex, then f
is called a concave univalent function. The class of all concave functions is
denoted by Co.

It is well known [1], that if f ∈ Co, then |an| ≥ 1 for all n > 1 and equality
holds if and only if f(z) = z/(1 − µz), |µ| = 1 (see [1, 3]). The authors in [2]
considered the class Co(p) ⊂ Co consisting of all concave functions that have a
pole at the point p and are analytic in |z| < |p|. They proved that if f ∈ Co(1),
then

(1.2)

∣

∣

∣

∣

an − n + 1

2

∣

∣

∣

∣

≤ n− 1

2
for n ≥ 2,

and equality holds only for the function fθ defined by

fθ(z) =
2z − (1 − eiθ)z2

2(1 − z)2
, |z| < 1.

It is well known that if f ∈ Co(1), then the complement of f(U) can be rep-
resented as the union of a set of mutually disjoint half-lines (the end point of
one half-line can lie on the another half-line), so f(U) is a linearly accessible
domain in the strict sense (see [8, 16]).

The authors in [7] also showed that Co(1) ⊂ K, where K is the set of close-
to-convex functions.

2. Main results

Throughout this section T will always be the sequence given by

(2.1) T = {Tn}∞n=2 =
{

2−nn−2
}∞

n=2
,

unless otherwise stated.
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Theorem 2.1. If f, g ∈ A are of the form f(z) = z +
∑∞

n=2 anz
n, g(z) =

z +
∑∞

n=2 bnz
n with |an| ≤ n and |bn| ≤ n for n = 2, 3, 4, . . ., then g ∈

TNlog{4/e}(f), where T is given in (2.1). The number log{4/e} is the best

possible.

Proof. A simple calculation shows that

(2.2)

∞
∑

n=1

zn

n2n
=

∫ z

0

∞
∑

n=1

ζn−1

2n
dζ =

∫ z

0

1/2

1 − ζ/2
dζ = log

1

1 − z/2
, |z| < 2,

so we have

(2.3)

∞
∑

n=1

1

n2n
= log 2,

and then
∞
∑

n=2

Tn|an − bn| ≤
∞
∑

n=2

2n

n22n
= 2

∞
∑

n=2

1

n2n
= 2 log 2 − 1 = log{4/e}.

For the functions

f(z) = z +
∞
∑

n=2

anz
n = z +

∞
∑

n=2

nzn, g(z) = z +
∞
∑

n=2

bnz
n = z −

∞
∑

n=2

nzn

we have
∞
∑

n=2

Tn|an − bn| = 2
∞
∑

n=2

1

n2n
= log{4/e}.

Therefore, the number log{4/e} cannot be replaced by a smaller one and it is
the best possible. �

It is well known that C ⊂ S∗ ⊂ K ⊂ S (see [9]), where S, S∗, C and K
denote the classes of univalent, starlike, convex and close-to-convex functions,
respectively. Also, if f ∈ S∗, then |an| ≤ n, n = 2, 3, . . ., while if f ∈ C, then
|an| ≤ 1, n = 2, 3, . . . .

Therefore we obtain the following corollary.

Corollary 2.2. If f ∈ S, then we have

S ⊂ TNlog{4/e}(f),

where T is given in (2.1).

The constant log{4/e} ≈ 0.386 seems not to be the best possible. An in-
teresting open problem is to find the smallest constant ̺ such that for each
f ∈ S

S ⊂ TN̺(f),
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where T is given in (2.1). For the Koebe function f(z) = z/(1 − z)2 and
g(z) = −f(−z) we have f, g ∈ S and

f(z) = z +

∞
∑

n=2

anz
n = z +

∞
∑

n=2

nzn, g(z) = z +

∞
∑

n=2

bnz
n = z +

∞
∑

n=2

(−1)n−1nzn

so by (2.2)
∞
∑

n=2

Tn|an − bn| =
∞
∑

k=1

4k

(2k)222k
= log{4/3}.

Therefore, the number ̺ cannot be smaller than log{4/3}. We conjecture that
̺ = log{4/3} = 0.28768 · · · .

Corollary 2.3. Let f ∈ C. Then S ⊂ TNβ(f) with

(2.4) β = log {2/e} +
π2

12
− (log 2)2

2
= 0.275 · · · .

Proof. At first, note that

f2(x) = −
∫ x

1

log t

t− 1
dt, x ∈ [0, 2],

is the dilogarithm. From the tables of dilogarithms we have

f2(x) =

∞
∑

k=1

(−1)k
(x− 1)k

k2
, x ∈ [0, 2],(2.5)

f2(x) + f2(1 − x) = − log {x} · log {1 − x} + π2/6,(2.6)

f2(1 + x) − f2(x) = − log {x} · log {x + 1} − π2/12 − f2(x2)/2.(2.7)

Therefore, using (2.5) and (2.6) we obtain

(2.8)
∞
∑

n=1

1

n22n
= f2(1/2) =

π2

12
− (log 2)2

2
.

If

f(z) = z +
∞
∑

n=2

anz
n ∈ C, g(z) = z +

∞
∑

n=2

bnz
n ∈ S,

then |an| ≤ 1, |bn| ≤ n and by (2.3), (2.8) we have

∞
∑

n=2

Tn|an − bn| ≤
∞
∑

n=2

n + 1

n22n
=

∞
∑

n=2

1

n2n
+

∞
∑

n=2

1

n22n
= log {2/e} + f2 (1/2)

= 0.275 · · · . �

In a similar way as in Corollary 2.2, the constant 0.275 · · · given in Corollary
2.3 is also not sharp but if the class S is replaced by the much larger class of
all normalized analytic functions f such that |an(f)| ≤ n for n ≥ 2, then (2.4)
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becomes sharp. The best possible constant in the case f ∈ S is not known. We
conjecture that the sharp constant is attained by the functions

f(z) = z +

∞
∑

n=2

anz
n =

z

(1 − z)n
g(z) = z +

∞
∑

n=2

bnz
n =

z

1 + z
.

It is clear that f ∈ S and g ∈ C. Moreover,
∞
∑

n=2

Tn|an − bn| =

∞
∑

n=2

n + 1

2nn2
−

∞
∑

n=2

1 + (−1)n−1

2nn2

= log {2/e} + f2(1/2) −
∞
∑

k=1

2

22k+1(2k + 1)2
.(2.9)

From the tables of dilogarithms we have
∞
∑

k=1

2

22k+1(2k + 1)2
=

∫ 1/2

0

1

t
log

1 + t

1 − t
dt− 1 = f2(1/2) − f2(3/2) − 1.

By (2.7) we have

f2(1/2) − f2(3/2) =
f2(1/4)

2
+

π2

12
− log {2} · log {3/2} .

Applying this in (2.9) we further get,
∞
∑

n=2

Tn|an − bn|

= log {2/e} + f2(1/2) −
{

f2(1/4)

2
+

π2

12
− log {2} · log {3/2} − 1

}

= log {2} · log
{

3e/(2
√

2)
}

− f2(1/4)

2
= 0.24473 · · · ,

because f2(1/4) = 0.978469393 · · · . Therefore, the smallest constant β such
that S ⊂ TNβ(f) for each f ∈ C lies between 0.2447 · · · and 0.275 · · · . We
conjecture that it is the first number.

Theorem 2.4. Let f, g1, g2 be of the form

f(z) = z +
∞
∑

n=2

anz
n, g1(z) = z +

∞
∑

n=2

cnz
n, g2(z) = z +

∞
∑

n=2

dnz
n,

where |an| ≤ n, |cn| ≤ n, |dn| ≤ n, n = 2, 3, . . .. Then

g1 ∗ g2 ∈ TNlog 2(f).

The number log 2 is the best possible.

Proof. Since

(g1 ∗ g2)(z) = z +

∞
∑

n=2

cndnz
n,
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then we have
∞
∑

n=2

1

n22n
|cndn − an| ≤

∞
∑

n=2

n2 + n

n22n
= log 2.

The functions

f(z) = z −
∞
∑

n=2

nzn, g1(z) = g2(z) = z +

∞
∑

n=2

nzn

show that the number log{2} is the best possible. Therefore the proof is com-
pleted. �

Definition 2.5 ([7]). Let A and B be arbitrary subsets of the A, and let T be
a sequence of positive number, then δ∗T (A,B) is defined by

δ∗T (A,B) = inf{δ > 0 : B ⊂ TNδ(f) for all f ∈ A}.
Let us denote

(2.10) T (f, g) =

∞
∑

n=2

Tn|an − bn|.

Therefore, we can write

δ∗T (A,B) = inf {δ : T (f, g) < δ for all f ∈ A, g ∈ B}
= sup {T (f, g) : f ∈ A, g ∈ B} ,

where the condition T (f, g) < δ means that the series T (f, g) is convergent
and its sum is less than δ. Therefore, we see that δ∗T (A,B) = δ∗T (B,A), and
we will say that δ∗T (A,B) is the T -factor with respect to the classes A and B.
Making use of the above definition, Corollary 2.2 and the consideration below
Corollary 2.2, we can state next corollary where T = {Tn}∞n=2 is again of the
form (2.1).

Corollary 2.6. The T -factor with respect to the classes S and S satisfies the

following inequality

(2.11) 0.287 · · · = log{4/3} ≤ δ∗T (S,S) ≤ log{4/e} = 0.386 · · · .
It is well known that the Koebe function and all its rotations belong to each

of the classes S, S∗ and K (univalent, starlike and close-to-convex functions
respectively), then Corollary 2.6 follows the next corollary.

Corollary 2.7. Let A and B be one of the classes S, S∗ or K. Then

log{4/3} ≤ δ∗T (A,B) ≤ log{4/e}.
In the same way as above, we can express Corollary 2.3 in terms T -factor.

It is done in the next result.

Corollary 2.8. The T -factor with respect to the classes C of convex functions

and S satisfies the following inequality

0.24473 · · · ≤ δ∗T (C,S) ≤ 0.275 · · · .
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Remark 2.9. Now we consider the “central” function with respect to coefficient
in the class Co(1) which is denoted by fc(z) and defined by

(2.12) fc(z) =
1

2

{

z

1 − z
+

z

(1 − z)2

}

= z +
∞
∑

n=1

n + 1

2
zn, |z| < 1.

In [7] the authors showed that fc ∈ Co(1).

Theorem 2.10. The following inclusion relation holds

Co(1) ⊂ TNδ(fc),

where δ = log
√

2/e + π2/24 − (log 2)2/4 = 0.13769 · · · .

Proof. Suppose that f(z) = z+
∑∞

n=2 anz
n ∈ Co(1), then from (1.2), and using

(2.3) and (2.4) with x = −1/2, we obtain

∞
∑

n=2

Tn

∣

∣

∣

∣

an − n + 1

2

∣

∣

∣

∣

≤ 1

2

∞
∑

n=2

n− 1

n22n

=
1

2

{

log 2 − 1

2
+ f2(1/2) − 1

2

}

=
1

2

{

log 2 − 1 +
π2

12
− (log 2)2

2

}

= 0.13769 · · · = δ. �
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