Bull. Korean Math. Soc. ${\bf 51}$ (2014), No. 3, pp. 659–666 http://dx.doi.org/10.4134/BKMS.2014.51.3.659

T-NEIGHBORHOODS IN VARIOUS CLASSES OF ANALYTIC FUNCTIONS

SAEID SHAMS, ALI EBADIAN, MAHTA SAYADIAZAR, AND JANUSZ SOKÓŁ

ABSTRACT. Let \mathcal{A} be the class of analytic functions f in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$ with the normalization conditions f(0) = f'(0) - 1 = 0. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $\delta > 0$ are given, then the T_{δ} -neighborhood of the function f is defined as

$$TN_{\delta}(f) = \left\{ g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{A} : \sum_{n=2}^{\infty} T_n |a_n - b_n| \le \delta \right\},\$$

where $T = \{T_n\}_{n=2}^{\infty}$ is a sequence of positive numbers. In the present paper we investigate some problems concerning T_{δ} -neighborhoods of functions in various classes of analytic functions with $T = \{2^{-n}/n^2\}_{n=2}^{\infty}$. We also find bounds for $\delta_T^*(A, B)$ defined by

$$\delta_T^*(A, B) = \inf \left\{ \delta > 0 : B \subset TN_{\delta}(f) \text{ for all } f \in A \right\},\$$

where A, B are given subsets of \mathcal{A} .

1. Introduction

Let \mathcal{A} denote the class of analytic functions f in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$ with the normalization conditions f(0) = f'(0) - 1 = 0. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, then the T_{δ} -neighborhood of the function f is defined as

(1.1)
$$TN_{\delta}(f) = \left\{ g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{A} : \sum_{n=2}^{\infty} T_n |a_n - b_n| \le \delta \right\},$$

where δ is a positive number and $T = \{T_n\}_{n=2}^{\infty}$ is a sequence of positive numbers. St. Ruscheweyh in [14] considered $T = \{n\}_{n=2}^{\infty}$ and showed that if $f \in C$, then $TN_{1/4}(f) \subset S^*$, where C, S^* denote the well known classes of convex and starlike functions, respectively. In [4, 5, 6, 7, 10, 11, 12, 17, 18] other authors investigated some interesting results concerning neighborhoods of several classes of analytic functions. Some of the relations between the neighborhoods for a certain class of analytic functions was described by S. Shams et al. [15].

©2014 Korean Mathematical Society

Received January 18, 2013; Revised July 10, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45; Secondary 30C50, 40A05.

Key words and phrases. analytic functions, univalent, starlike, convex, close-to-convex, concave functions, neighborhood, T_{δ} -neighborhood, T-factor.

Also U. Bednarz and J. Sokół in [7] considered $T = \{\frac{1}{n^2(n-1)}\}_{n=2}^{\infty}$ and investigated T_{δ} -neighborhood for various subclasses of analytic functions. Motivated by the above results, we consider in this paper T_{δ} -neighborhood (1.1) with $T = \{2^{-n}n^{-2}\}_{n=2}^{\infty}$. We use this sequence because it is sufficiently strongly convergent to 0, which is necessary for the series considered here to be convergent. Notice that $\sum_{n=1}^{\infty} 2^{-n}n^{-2} = \pi^2/12 - (\log 2)^2/2$ and it is the value of dilogarithm at 1/2, [13].

The convolution or Hadamard product of the functions f and g of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n, \quad |z| < 1,$$

is defined by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

Definition 1.1 ([2]). Let us consider the functions f that are meromorphic and univalent in \mathbb{U} , holomorphic at 0 and have the expansion $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. If, in addition, the complement of $f(\mathbb{U})$ with respect to \mathbb{C} is convex, then f is called a concave univalent function. The class of all concave functions is denoted by $\mathcal{C}o$.

It is well known [1], that if $f \in Co$, then $|a_n| \ge 1$ for all n > 1 and equality holds if and only if $f(z) = z/(1 - \mu z)$, $|\mu| = 1$ (see [1, 3]). The authors in [2] considered the class $Co(p) \subset Co$ consisting of all concave functions that have a pole at the point p and are analytic in |z| < |p|. They proved that if $f \in Co(1)$, then

(1.2)
$$\left| a_n - \frac{n+1}{2} \right| \le \frac{n-1}{2} \text{ for } n \ge 2,$$

and equality holds only for the function f_{θ} defined by

$$f_{\theta}(z) = \frac{2z - (1 - e^{i\theta})z^2}{2(1 - z)^2}, \quad |z| < 1.$$

It is well known that if $f \in Co(1)$, then the complement of $f(\mathbb{U})$ can be represented as the union of a set of mutually disjoint half-lines (the end point of one half-line can lie on the another half-line), so $f(\mathbb{U})$ is a linearly accessible domain in the strict sense (see [8, 16]).

The authors in [7] also showed that $\mathcal{C}o(1) \subset \mathcal{K}$, where \mathcal{K} is the set of close-to-convex functions.

2. Main results

Throughout this section T will always be the sequence given by

(2.1)
$$T = \{T_n\}_{n=2}^{\infty} = \{2^{-n}n^{-2}\}_{n=2}^{\infty}$$

unless otherwise stated.

Theorem 2.1. If $f, g \in \mathcal{A}$ are of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ with $|a_n| \leq n$ and $|b_n| \leq n$ for $n = 2, 3, 4, \ldots$, then $g \in TN_{\log\{4/e\}}(f)$, where T is given in (2.1). The number $\log\{4/e\}$ is the best possible.

Proof. A simple calculation shows that

(2.2)
$$\sum_{n=1}^{\infty} \frac{z^n}{n2^n} = \int_0^z \sum_{n=1}^{\infty} \frac{\zeta^{n-1}}{2^n} \, \mathrm{d}\zeta = \int_0^z \frac{1/2}{1-\zeta/2} \, \mathrm{d}\zeta = \log \frac{1}{1-z/2}, \quad |z| < 2,$$

so we have

(2.3)
$$\sum_{n=1}^{\infty} \frac{1}{n2^n} = \log 2.$$

and then

$$\sum_{n=2}^{\infty} T_n |a_n - b_n| \le \sum_{n=2}^{\infty} \frac{2n}{n^2 2^n} = 2 \sum_{n=2}^{\infty} \frac{1}{n 2^n} = 2 \log 2 - 1 = \log\{4/e\}.$$

For the functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n = z + \sum_{n=2}^{\infty} n z^n, \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n = z - \sum_{n=2}^{\infty} n z^n$$

we have

$$\sum_{n=2}^{\infty} T_n |a_n - b_n| = 2 \sum_{n=2}^{\infty} \frac{1}{n2^n} = \log\{4/e\}.$$

Therefore, the number $\log\{4/e\}$ cannot be replaced by a smaller one and it is the best possible.

It is well known that $C \subset S^* \subset K \subset S$ (see [9]), where S, S^*, C and K denote the classes of univalent, starlike, convex and close-to-convex functions, respectively. Also, if $f \in S^*$, then $|a_n| \leq n, n = 2, 3, \ldots$, while if $f \in C$, then $|a_n| \leq 1, n = 2, 3, \ldots$.

Therefore we obtain the following corollary.

Corollary 2.2. If $f \in S$, then we have

$$\mathcal{S} \subset TN_{\log\{4/e\}}(f),$$

where T is given in (2.1).

The constant $\log\{4/e\} \approx 0.386$ seems not to be the best possible. An interesting open problem is to find the smallest constant ρ such that for each $f \in S$

$$\mathcal{S} \subset TN_{\varrho}(f),$$

where T is given in (2.1). For the Koebe function $f(z)=z/(1-z)^2$ and g(z)=-f(-z) we have $f,g\in \mathcal{S}$ and

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n = z + \sum_{n=2}^{\infty} n z^n, \ g(z) = z + \sum_{n=2}^{\infty} b_n z^n = z + \sum_{n=2}^{\infty} (-1)^{n-1} n z^n$$

so by (2.2)

$$\sum_{n=2}^{\infty} T_n |a_n - b_n| = \sum_{k=1}^{\infty} \frac{4k}{(2k)^2 2^{2k}} = \log\{4/3\}.$$

Therefore, the number ρ cannot be smaller than $\log\{4/3\}$. We conjecture that $\rho = \log\{4/3\} = 0.28768\cdots$.

Corollary 2.3. Let $f \in C$. Then $S \subset TN_{\beta}(f)$ with

(2.4)
$$\beta = \log \left\{ 2/e \right\} + \frac{\pi^2}{12} - \frac{(\log 2)^2}{2} = 0.275 \cdots$$

Proof. At first, note that

$$f_2(x) = -\int_1^x \frac{\log t}{t-1} \mathrm{d}t, \quad x \in [0,2],$$

is the dilogarithm. From the tables of dilogarithms we have

(2.5)
$$f_2(x) = \sum_{k=1}^{\infty} (-1)^k \frac{(x-1)^k}{k^2}, \quad x \in [0,2],$$

(2.6)
$$f_2(x) + f_2(1-x) = -\log\{x\} \cdot \log\{1-x\} + \pi^2/6,$$

(2.7)
$$f_2(1+x) - f_2(x) = -\log\{x\} \cdot \log\{x+1\} - \frac{\pi^2}{12} - \frac{f_2(x^2)}{2}.$$

Therefore, using (2.5) and (2.6) we obtain

(2.8)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 2^n} = f_2(1/2) = \frac{\pi^2}{12} - \frac{(\log 2)^2}{2}.$$

 \mathbf{If}

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{C}, \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{S},$$

then $|a_n| \le 1$, $|b_n| \le n$ and by (2.3), (2.8) we have

$$\sum_{n=2}^{\infty} T_n |a_n - b_n| \le \sum_{n=2}^{\infty} \frac{n+1}{n^2 2^n} = \sum_{n=2}^{\infty} \frac{1}{n 2^n} + \sum_{n=2}^{\infty} \frac{1}{n^2 2^n} = \log\{2/e\} + f_2(1/2)$$
$$= 0.275 \cdots .$$

In a similar way as in Corollary 2.2, the constant $0.275\cdots$ given in Corollary 2.3 is also not sharp but if the class S is replaced by the much larger class of all normalized analytic functions f such that $|a_n(f)| \leq n$ for $n \geq 2$, then (2.4)

becomes sharp. The best possible constant in the case $f \in S$ is not known. We conjecture that the sharp constant is attained by the functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n = \frac{z}{(1-z)^n}$$
 $g(z) = z + \sum_{n=2}^{\infty} b_n z^n = \frac{z}{1+z}.$

It is clear that $f \in \mathcal{S}$ and $g \in \mathcal{C}$. Moreover,

(2.9)

$$\sum_{n=2}^{\infty} T_n |a_n - b_n| = \sum_{n=2}^{\infty} \frac{n+1}{2^n n^2} - \sum_{n=2}^{\infty} \frac{1 + (-1)^{n-1}}{2^n n^2} = \log \left\{ 2/e \right\} + f_2(1/2) - \sum_{k=1}^{\infty} \frac{2}{2^{2k+1}(2k+1)^2}.$$

From the tables of dilogarithms we have

$$\sum_{k=1}^{\infty} \frac{2}{2^{2k+1}(2k+1)^2} = \int_0^{1/2} \frac{1}{t} \log \frac{1+t}{1-t} dt - 1 = f_2(1/2) - f_2(3/2) - 1.$$

By (2.7) we have

 \sim

$$f_2(1/2) - f_2(3/2) = \frac{f_2(1/4)}{2} + \frac{\pi^2}{12} - \log\{2\} \cdot \log\{3/2\}.$$

Applying this in (2.9) we further get,

$$\sum_{n=2}^{\infty} T_n |a_n - b_n|$$

= $\log \{2/e\} + f_2(1/2) - \left\{ \frac{f_2(1/4)}{2} + \frac{\pi^2}{12} - \log \{2\} \cdot \log \{3/2\} - 1 \right\}$
= $\log \{2\} \cdot \log \left\{ \frac{3e}{(2\sqrt{2})} \right\} - \frac{f_2(1/4)}{2} = 0.24473 \cdots,$

because $f_2(1/4) = 0.978469393\cdots$. Therefore, the smallest constant β such that $S \subset TN_{\beta}(f)$ for each $f \in C$ lies between $0.2447\cdots$ and $0.275\cdots$. We conjecture that it is the first number.

Theorem 2.4. Let f, g_1, g_2 be of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ g_1(z) = z + \sum_{n=2}^{\infty} c_n z^n, \ g_2(z) = z + \sum_{n=2}^{\infty} d_n z^n,$$

where $|a_n| \le n, \ |c_n| \le n, \ |d_n| \le n, \ n = 2, 3, \dots$ Then

$$_1 * g_2 \in TN_{\log 2}(f).$$

g

The number $\log 2$ is the best possible.

Proof. Since

$$(g_1 * g_2)(z) = z + \sum_{n=2}^{\infty} c_n d_n z^n,$$

then we have

$$\sum_{n=2}^{\infty} \frac{1}{n^2 2^n} |c_n d_n - a_n| \le \sum_{n=2}^{\infty} \frac{n^2 + n}{n^2 2^n} = \log 2.$$

The functions

$$f(z) = z - \sum_{n=2}^{\infty} nz^n$$
, $g_1(z) = g_2(z) = z + \sum_{n=2}^{\infty} nz^n$

show that the number $\log\{2\}$ is the best possible. Therefore the proof is completed.

Definition 2.5 ([7]). Let A and B be arbitrary subsets of the \mathcal{A} , and let T be a sequence of positive number, then $\delta_T^*(A, B)$ is defined by

$$\delta_T^*(A,B) = \inf\{\delta > 0 : B \subset TN_\delta(f) \text{ for all } f \in A\}.$$

Let us denote

(2.10)
$$T(f,g) = \sum_{n=2}^{\infty} T_n |a_n - b_n|.$$

Therefore, we can write

$$\delta_T^*(A,B) = \inf \left\{ \delta : T(f,g) < \delta \text{ for all } f \in A, g \in B \right\}$$
$$= \sup \left\{ T(f,g) : f \in A, g \in B \right\},$$

where the condition $T(f,g) < \delta$ means that the series T(f,g) is convergent and its sum is less than δ . Therefore, we see that $\delta_T^*(A, B) = \delta_T^*(B, A)$, and we will say that $\delta_T^*(A, B)$ is the *T*-factor with respect to the classes *A* and *B*. Making use of the above definition, Corollary 2.2 and the consideration below Corollary 2.2, we can state next corollary where $T = \{T_n\}_{n=2}^{\infty}$ is again of the form (2.1).

Corollary 2.6. The T-factor with respect to the classes S and S satisfies the following inequality

(2.11)
$$0.287\dots = \log\{4/3\} \le \delta_T^*(\mathcal{S}, \mathcal{S}) \le \log\{4/e\} = 0.386\dots$$

It is well known that the Koebe function and all its rotations belong to each of the classes S, S^* and \mathcal{K} (univalent, starlike and close-to-convex functions respectively), then Corollary 2.6 follows the next corollary.

Corollary 2.7. Let A and B be one of the classes S, S^* or K. Then

$$\log\{4/3\} \le \delta_T^*(A, B) \le \log\{4/e\}.$$

In the same way as above, we can express Corollary 2.3 in terms T-factor. It is done in the next result.

Corollary 2.8. The T-factor with respect to the classes C of convex functions and S satisfies the following inequality

 $0.24473\cdots \leq \delta_T^*(\mathcal{C},\mathcal{S}) \leq 0.275\cdots$

Remark 2.9. Now we consider the "central" function with respect to coefficient in the class Co(1) which is denoted by $f_c(z)$ and defined by

(2.12)
$$f_c(z) = \frac{1}{2} \left\{ \frac{z}{1-z} + \frac{z}{(1-z)^2} \right\} = z + \sum_{n=1}^{\infty} \frac{n+1}{2} z^n, \quad |z| < 1.$$

In [7] the authors showed that $f_c \in \mathcal{C}o(1)$.

Theorem 2.10. The following inclusion relation holds

 $\mathcal{C}o(1) \subset TN_{\delta}(f_c),$

where $\delta = \log \sqrt{2/e} + \pi^2/24 - (\log 2)^2/4 = 0.13769 \cdots$.

Proof. Suppose that $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{C}o(1)$, then from (1.2), and using (2.3) and (2.4) with x = -1/2, we obtain

$$\begin{split} \sum_{n=2}^{\infty} T_n \left| a_n - \frac{n+1}{2} \right| &\leq \frac{1}{2} \sum_{n=2}^{\infty} \frac{n-1}{n^2 2^n} \\ &= \frac{1}{2} \left\{ \log 2 - \frac{1}{2} + f_2(1/2) - \frac{1}{2} \right\} \\ &= \frac{1}{2} \left\{ \log 2 - 1 + \frac{\pi^2}{12} - \frac{(\log 2)^2}{2} \right\} \\ &= 0.13769 \dots = \delta. \end{split}$$

Acknowledgment. The authors would like to express their sincerest thanks to the referees for a careful reading and various suggestions made for the improvement of the paper.

References

- F. G. Avkhadiev, Ch. Pommerenke, and K. J. Wirths, On the coefficients of concave univalent functions, Math. Nachr. 271 (2004), 3–9.
- [2] _____, Sharp inequalities for the coefficients of concave schlicht functions, Comment. Math. Helv. 81 (2006), no. 4, 801–807.
- [3] F. G. Avkhadiev and K. J. Wirths, Convex holes produce lower bound for coefficients, Complex Var. Theory Appl. 47 (2002), no. 7, 553–563.
- [4] U. Bednarz, Stability of the Hadamard product of k-uniformly convex and k-starlike functions in certain neighbourhood, Demonstratio Math. 38 (2005), no. 4, 837–845.
- [5] U. Bednarz and S. Kanas, Stability of the integral convolution of k-uniformly convex and k-starlike functions, J. Appl. Anal. 10 (2004), no. 1, 105–115.
- [6] U. Bednarz and J. Sokół, On the integral convolution of certain classes of analytic functions, Taiwanese J. Math. 13 (2009), no. 5, 1387–1396.
- [7] _____, T-neighborhoods of analytic functions, J. Math. Appl. 32 (2010), 25–32.
- [8] A. Bielecki and Z. Lewandowski, Sur une généralisation de quelques théorèmes de M. Biernacki sur les fonctions analytiques, Ann. Polon. Math. 12 (1962), 65–70.
- [9] P. L. Duren, Univalent functions, Springer Verlag, Grund. math. Wiss. 259, New York, Berlin, Heidelberg, Tokyo, 1983.
- [10] R. Fournier, A note on neighbourhoods of univalent functions, Proc. Amer. Math. Soc. 87 (1983), no. 1, 117–120.

- [11] _____, On neighbourhoods of univalent starlike functions, Ann. Polon. Math. 47 (1986), no. 20, 189–202.
- [12] _____, On neighbourhoods of univalent convex functions, Rocky Mountain J. Math. 16 (1986), no. 3, 579–589.
- [13] L. Lewin, Dilogarithms and Associated Functions, Macdonald, London, 1958.
- [14] St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521–527.
- [15] S. Shams and S. R. Kulkarni, Certain properties of the class of univalent functions defined by Ruscheweyh derivative, Bull. Cal. Math. Soc. 97 (2005), no. 3, 223–234.
- T. Sheil-Small, On linear accessibility and the conformal mapping of convex domains, J. Analyse Math. 25 (1972), 259–276.
- [17] T. Sheil-Small and E. M. Silvia, Neighborhoods of analytic functions, J. Analyse Math. 52 (1989), 210–240.
- [18] J. Stankiewicz, Neighbourhoods of meromorphic functions and Hadamard products, Ann. Polon. Math. 46 (1985), 317–331.

SAEID SHAMS DEPARTMENT OF MATHEMATICS UNIVERSITY OF URMIA URMIA, IRAN *E-mail address*: s.shams@urmia.ac.ir

ALI EBADIAN DEPARTMENT OF MATHEMATICS PAYAME NOOR UNIVERSITY TEHRAN, IRAN *E-mail address*: a.ebadian@urmia.ac.ir

Mahta Sayadiazar Department of Mathematics University of Urmia Urmia, Iran *E-mail address*: m.sayyadiazar@yahoo.com

Janusz Sokół Department of Mathematics Rzeszów University of Technology Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland *E-mail address*: jsokol@prz.edu.pl