Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.3.659

T-NEIGHBORHOODS IN VARIOUS CLASSES OF ANALYTIC FUNCTIONS  

Shams, Saeid (Department of Mathematics University of Urmia)
Ebadian, Ali (Department of Mathematics Payame Noor University)
Sayadiazar, Mahta (Department of Mathematics University of Urmia)
Sokol, Janusz (Department of Mathematics Rzeszow University of Technology)
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.3, 2014 , pp. 659-666 More about this Journal
Abstract
Let $\mathcal{A}$ be the class of analytic functions f in the open unit disk $\mathbb{U}$={z : ${\mid}z{\mid}$ < 1} with the normalization conditions $f(0)=f^{\prime}(0)-1=0$. If $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ and ${\delta}$ > 0 are given, then the $T_{\delta}$-neighborhood of the function f is defined as $$TN_{\delta}(f)\{g(z)=z+\sum_{n=2}^{\infty}b_nz^n{\in}\mathcal{A}:\sum_{n=2}^{\infty}T_n{\mid}a_n-b_n{\mid}{\leq}{\delta}\}$$, where $T=\{T_n\}_{n=2}^{\infty}$ is a sequence of positive numbers. In the present paper we investigate some problems concerning $T_{\delta}$-neighborhoods of function in various classes of analytic functions with $T=\{2^{-n}/n^2\}_{n=2}^{\infty}$. We also find bounds for $^{\delta}^*_T(A,B)$ defined by $$^{\delta}^*_T(A,B)=jnf\{{\delta}&gt;0:B{\subset}TN_{\delta}(f)\;for\;all\;f{\in}A\}$$ where A, B are given subsets of $\mathcal{A}$.
Keywords
analytic functions; univalent; starlike; convex; close-to-convex; concave functions; neighborhood; $T_{\delta}$-neighborhood; T-factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Stankiewicz, Neighbourhoods of meromorphic functions and Hadamard products, Ann. Polon. Math. 46 (1985), 317-331.   DOI
2 S. Shams and S. R. Kulkarni, Certain properties of the class of univalent functions defined by Ruscheweyh derivative, Bull. Cal. Math. Soc. 97 (2005), no. 3, 223-234.
3 T. Sheil-Small, On linear accessibility and the conformal mapping of convex domains, J. Analyse Math. 25 (1972), 259-276.   DOI
4 T. Sheil-Small and E. M. Silvia, Neighborhoods of analytic functions, J. Analyse Math. 52 (1989), 210-240.
5 L. Lewin, Dilogarithms and Associated Functions, Macdonald, London, 1958.
6 St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521-527.   DOI   ScienceOn
7 U. Bednarz, Stability of the Hadamard product of k-uniformly convex and k-starlike functions in certain neighbourhood, Demonstratio Math. 38 (2005), no. 4, 837-845.
8 F. G. Avkhadiev, Ch. Pommerenke, and K. J. Wirths, On the coefficients of concave univalent functions, Math. Nachr. 271 (2004), 3-9.   DOI   ScienceOn
9 F. G. Avkhadiev, Ch. Pommerenke, and K. J. Wirths, Sharp inequalities for the coefficients of concave schlicht functions, Comment. Math. Helv. 81 (2006), no. 4, 801-807.
10 U. Bednarz and S. Kanas, Stability of the integral convolution of k-uniformly convex and k-starlike functions, J. Appl. Anal. 10 (2004), no. 1, 105-115.
11 U. Bednarz and J. Sokol, On the integral convolution of certain classes of analytic functions, Taiwanese J. Math. 13 (2009), no. 5, 1387-1396.   DOI
12 U. Bednarz and J. Sokol, T-neighborhoods of analytic functions, J. Math. Appl. 32 (2010), 25-32.
13 A. Bielecki and Z. Lewandowski, Sur une generalisation de quelques theoremes de M. Biernacki sur les fonctions analytiques, Ann. Polon. Math. 12 (1962), 65-70.   DOI
14 R. Fournier, On neighbourhoods of univalent convex functions, Rocky Mountain J. Math. 16 (1986), no. 3, 579-589.   DOI
15 P. L. Duren, Univalent functions, Springer Verlag, Grund. math. Wiss. 259, New York, Berlin, Heidelberg, Tokyo, 1983.
16 R. Fournier, A note on neighbourhoods of univalent functions, Proc. Amer. Math. Soc. 87 (1983), no. 1, 117-120.   DOI   ScienceOn
17 R. Fournier, On neighbourhoods of univalent starlike functions, Ann. Polon. Math. 47 (1986), no. 20, 189-202.   DOI
18 F. G. Avkhadiev and K. J. Wirths, Convex holes produce lower bound for coefficients, Complex Var. Theory Appl. 47 (2002), no. 7, 553-563.   DOI   ScienceOn