• Title/Summary/Keyword: starlike and convex functions

Search Result 102, Processing Time 0.022 seconds

THE FEKETE-SZEGÖ INEQUALITY FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION BETWEEN GENERALIZED AL-OBOUDI DIFFERENTIAL OPERATOR AND SRIVASTAVA-ATTIYA INTEGRAL OPERATOR

  • Challab, K.A.;Darus, M.;Ghanim, F.
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.191-214
    • /
    • 2018
  • The aim of this paper is to investigate the Fekete $Szeg{\ddot{o}}$ inequality for subclass of analytic functions defined by convolution between generalized Al-Oboudi differential operator and Srivastava-Attiya integral operator. Further, application to fractional derivatives are also given.

A FAMILY OF HOLOMORPHIC FUNCTIONS ASSOCIATED WITH MUTUALLY ADJOINT FUNCTIONS

  • K.R. KARTHIKEYAN;G. MURUGUSUNDARAMOORTHY;N.E. CHO
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.997-1006
    • /
    • 2024
  • In this paper, making use of symmetric differential operator, we introduce a new class of ℓ-symmetric - mutually adjoint functions. To make this study more comprehensive and versatile, we have used a differential operator involving three-parameter extension of the well-known Mittag-Leffler functions. Mainly we investigated the inclusion relation and subordination conditions which are the main results of the paper. To establish connections or relations with earlier studies, we have presented applications of main results as corollaries.

SUFFICIENT CONDITIONS FOR STARLIKENESS

  • RAVICHANDRAN, V.;SHARMA, KANIKA
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.727-749
    • /
    • 2015
  • We obtain the conditions on ${\beta}$ so that $1+{\beta}zp^{\prime}(z){\prec}1+4z/3+2z^2/3$ implies p(z) ${\prec}$ (2+z)/(2-z), $1+(1-{\alpha})z$, $(1+(1-2{\alpha})z)/(1-z)$, ($0{\leq}{\alpha}$<1), exp(z) or ${\sqrt{1+z}}$. Similar results are obtained by considering the expressions $1+{\beta}zp^{\prime}(z)/p(z)$, $1+{\beta}zp^{\prime}(z)/p^2(z)$ and $p(z)+{\beta}zp^{\prime}(z)/p(z)$. These results are applied to obtain sufficient conditions for normalized analytic function f to belong to various subclasses of starlike functions, or to satisfy the condition ${\mid}log(zf^{\prime}(z)/f(z)){\mid}$ < 1 or ${\mid}(zf^{\prime}(z)/f(z))^2-1{\mid}$ < 1 or zf'(z)/f(z) lying in the region bounded by the cardioid $(9x^2+9y^2-18x+5)^2-16(9x^2+9y^2-6x+1)=0$.

THIRD ORDER HANKEL DETERMINANT FOR CERTAIN UNIVALENT FUNCTIONS

  • BANSAL, DEEPAK;MAHARANA, SUDHANANDA;PRAJAPAT, JUGAL KISHORE
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1139-1148
    • /
    • 2015
  • The estimate of third Hankel determinant $$H_{3,1}(f)=\left|a_1\;a_2\;a_3\\a_2\;a_3\;a_4\\a_3\;a_4\;a_5\right|$$ of the analytic function $f(z)=z+a2z^2+a3z^3+{\cdots}$, for which ${\Re}(1+zf^{{\prime}{\prime}}(z)/f^{\prime}(z))>-1/2$ are investigated. The corrected version of a known results [2, Theorem 3.1 and Theorem 3.3] are also obtained.

Subclasses of Starlike and Convex Functions Associated with Pascal Distribution Series

  • Frasin, Basem Aref;Swamy, Sondekola Rudra;Wanas, Abbas Kareem
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.99-110
    • /
    • 2021
  • In the present paper, we determine new characterisations of the subclasses ����∗��(α, β; γ) and ������(α, β; γ) of analytic functions associated with Pascal distribution series ${\Phi}^m_q(z)=z-{\sum_{n=2}^{\infty}}(^{n+m-2}_{m-1})q^{n-1}(1-q)^mz^n$. Further, we give necessary and sufficient conditions for an integral operator related to Pascal distribution series ${\mathcal{G}}^m_qf(z)={\int_{0}^{z}}{\frac{{\Phi}^m_q(t)}{t}}dt$ to belong to the above classes. Several corollaries and consequences of the main results are also considered.

On the Fekete-Szegö Problem for a Certain Class of Meromorphic Functions Using q-Derivative Operator

  • Aouf, Mohamed Kamal;Orhan, Halit
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.307-318
    • /
    • 2018
  • In this paper, we obtain $Fekete-Szeg{\ddot{o}}$ inequalities for certain class of meromorphic functions f(z) for which $-{\frac{(1-{\frac{{\alpha}}{q}})qzD_qf(z)+{\alpha}qzD_q[zD_qf(z)]}{(1-{\frac{{\alpha}}{q}})f(z)+{\alpha}zD_qf(z)}{\prec}{\varphi}(z)$(${\alpha}{\in}{\mathbb{C}}{\backslash}(0,1]$, 0 < q < 1). Sharp bounds for the $Fekete-Szeg{\ddot{o}}$ functional ${\mid}{\alpha}_1-{\mu}{\alpha}^2_0{\mid}$ are obtained.

SOME PROPERTIES OF CERTAIN CLASSES OF FUNCTIONS WITH BOUNDED RADIUS ROTATIONS

  • NOOR, KHALIDA INAYAT
    • Honam Mathematical Journal
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 1997
  • Let $R_k({\alpha})$, $0{\leq}{\alpha}<1$, $k{\geq}2$ denote certain subclasses of analytic functions in the unit disc E with bounded radius rotation. A function f, analytic in E and given by $f(z)=z+{\sum_{m=2}^{\infty}}a_m{z^m}$, is said to be in the family $R_k(n,{\alpha})n{\in}N_o=\{0,1,2,{\cdots}\}$ and * denotes the Hadamard product. The classes $R_k(n,{\alpha})$ are investigated and same properties are given. It is shown that $R_k(n+1,{\alpha}){\subset}R_k(n,{\alpha})$ for each n. Some integral operators defined on $R_k(n,{\alpha})$ are also studied.

  • PDF

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • Honam Mathematical Journal
    • /
    • v.44 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.

First Order Differential Subordinations and Starlikeness of Analytic Maps in the Unit Disc

  • Singh, Sukhjit;Gupta, Sushma
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.395-404
    • /
    • 2005
  • Let α be a complex number with 𝕽α > 0. Let the functions f and g be analytic in the unit disc E = {z : |z| < 1} and normalized by the conditions f(0) = g(0) = 0, f'(0) = g'(0) = 1. In the present article, we study the differential subordinations of the forms $${\alpha}{\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}+{\frac{zf^{\prime}(z)}{f(z)}}{\prec}{\alpha}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}}+{\frac{zg^{\prime}(z)}{g(z)}},\;z{\in}E,$$ and $${\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}{\prec}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}},\;z{\in}E.$$ As consequences, we obtain a number of sufficient conditions for star likeness of analytic maps in the unit disc. Here, the symbol ' ${\prec}$ ' stands for subordination

  • PDF

STRONG DIFFERENTIAL SUBORDINATION AND APPLICATIONS TO UNIVALENCY CONDITIONS

  • Antonino Jose- A.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.311-322
    • /
    • 2006
  • For the Briot-Bouquet differential equations of the form given in [1] $${{\mu}(z)+\frac {z{\mu}'(z)}{z\frac {f'(z)}{f(z)}\[\alpha{\mu}(z)+\beta]}=g(z)$$ we can reduce them to $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$ where $$v(z)=\alpha{\mu}(z)+\beta,\;h(z)={\alpha}g(z)+\beta\;and\;F(z)=f(z)/f'(z)$$. In this paper we are going to give conditions in order that if u and v satisfy, respectively, the equations (1) $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$, $${{\mu}(z)+G(z)\frac {v'(z)}{v(z)}=g(z)$$ with certain conditions on the functions F and G applying the concept of strong subordination $g\;\prec\;\prec\;h$ given in [2] by the author, implies that $v\;\prec\;{\mu},\;where\;\prec$ indicates subordination.