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SUFFICIENT CONDITIONS FOR STARLIKENESS

V. RAVICHANDRAN AND KANIKA SHARMA

ABSTRACT. We obtain the conditions on 3 so that 14+-82p’(z) < 1+4z/3+
222/3 implies p(z) < (2+2)/(2—2), 1+ (1 —a)z, (1+(1—2a)2)/(1-=2),
(0 < a<1),exp(z)or 1+ z. Similar results are obtained by considering
the expressions 1+82p’(2)/p(2), 14+B2p'(2)/p?(2) and p(2)+Bzp’ (2)/p(2).
These results are applied to obtain sufficient conditions for normalized
analytic function f to belong to various subclasses of starlike functions, or
to satisfy the condition |log(zf'(2)/f(2))| < Lor |(2f'(2)/f(2))? —1| < 1
or z2f'(2)/f(2) lying in the region bounded by the cardioid (922 4 9y2 —
18z + 5)2 — 16(9z2 + 9y — 6z + 1) = 0.

1. Introduction

Let A denote the class of analytic functions in the unit disc D = {z € C :
|z| < 1} of the form f(2) = z + Y poyarz®. An analytic function p(z) =
1+ cz+--- is a function with a positive real part if Rep(z) > 0. The class
of all such functions is denoted by P. For two functions f and g analytic in
D, f is subordinate to g, denoted by f < g, if there is an analytic function w
in D with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). In particular,
if the function ¢ is univalent in D, then f < g is equivalent to f(0) = ¢(0)
and f(D) C ¢g(D). Noticing that several subclasses of univalent functions are
characterized by the quantities zf'(z)/f(z) or 1+zf"(z)/f'(2) lying in a region
in the right-half plane, Ma and Minda [6] gave a unified presentation of various
subclasses of convex and starlike functions. They considered analytic functions
(o with positive real part in D that map the unit disc D onto regions starlike
with respect to 1, symmetric with respect to the real axis and normalized by
the conditions ¢(0) = 1 and ¢’(0) > 0. Ma and Minda [6] introduced the
following classes:

stei={reas I <o)

Received July 31, 2014.

2010 Mathematics Subject Classification. 30C80, 30C45.

Key words and phrases. convex and starlike functions, lemniscate of Bernoulli, subordi-
nation, cardioid.

The authors are thankful to Sumit Nagpal for careful reading of this manuscript. The
work presented here was supported by a grant from University of Delhi.

©2015 Korean Mathematical Society



728 V. RAVICHANDRAN AND K. SHARMA

and

Clp) = {f eA: 1+ fo/lé(;) < go(z)}

For special choices of ¢, $*(¢) reduces to well-known subclasses of starlike
functions. For example, when —1 < B < A <1, §*[4,B] :=S*((1+ A2)/(1+
Bz)) is the class of Janowski starlike function [4, 10] and S*[1 — 2a, —1] is the
class S*(«a) of starlike functions of order «, introduced by Robertson [12] and
S§* := 8*(0) is the class of starlike functions. Similarly, S} := S*(v/1 + z) is the
subclass of S* introduced by Sokdl and Stankiewicz [18], consisting of functions
f € A such that zf'(z)/f(z) lies in the region bounded by the right-half of the
lemniscate of Bernoulli given by |w? — 1| < 1. More results regarding these
classes can be found in [1, 3, 5, 11, 13, 16, 17]. Recently, Sharma et al. [14]
introduced and studied the properties of the class

S*(1+ (4/3)z + (2/3)2%) = S¢.

Precisely, f € S;, provided zf’(z)/f(z) lies in the region bounded by the car-
dioid (922 49y —182+5)2—16(92%+9y? —62+1) = 0. The class S* := S*(e?),
introduced recently by Mendiratta et al. [7], consists of functions f € A satis-
fying the condition |log(zf'(2)/f(2))| < 1.

Let p be an analytic function defined on D with p(0) = 1. Recently Ali et al.
[2] determined the condition on g for p(z) < v/1+ z when 1 + Bzp'(2)/p"(z)
with n = 0,1,2 or (1 — B)p(z) + Bp*(z) + Bzp'(z) is subordinated to /1 + z.
Motivated by the works in [1, 2, 3, 9, 15, 17], in Section 2, we determine
the sharp conditions on f§ so that p(z) < (2+2)/(2—2) or 14+ (1 — a)z or
(1+(1—-2a)2)/(1=2), (0 < a< 1) when 1+ Bzp'(2) < 1+ 42/3 + 222/3.
Conditions on 3 so that 1+ Bzp/(2)/p(z) < 1+ 42/3 + 22%/3 implies p(z) <
(142)/(1—z) or 1+z are also discussed. Conditions on /5 are derived so that the
subordination 1+ 3zp/(2)/p?(2) < 1+42/3+22%/3 implies p(z) < (1+2)/(1—2)
or (24 2)/(2—2) or 14+ z. We also determine the conditions on § so that
p(2) < (1+2)/(1—2) or 1+42/3+22%/3, when p(2)+B2p'(2)/p(z) < 1+42/3+
222/3. Section 3 of the paper investigates the sharp conditions on 3 so that
14+82p'(2)/p™(2) < 1+42/3+222/3 (n = 0,1, 2) implies p(z) < €*. Similarly, in
Section 4, we consider differential implications with the superordinate function
e” replaced by the superordinate function /1 + z. In addition to this, condition
on 3 is determined so that p(z) < v/1 + z when p(2)+8zp'(2)/p(z) < 1+4z/3+
222 /3. In Section 5, we give applications of our results which will yield sufficient
conditions for f € A to belong to the various subclasses of starlike functions.

The following results will be required in our investigation.

Lemma 1.1 ([8, Corollary 3.4h, p. 135]). Let ¢ be univalent in D, and let ¢
be analytic in a domain D containing q(D). Let zq'(2)¢(q(z)) be starlike. If p
is analytic in D, p(0) = ¢(0) and satisfies zp'(z2)p(p(z)) < 2¢'(2)¢(q(2)), then
p < q and q is the best dominant.

The following is a more general version of the above lemma.
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Lemma 1.2 ([8, Theorem 3.4i, p. 134]). Let q be univalent in D and let ¢ and
v be analytic in a domain D containing q(D) with p(w) # 0 when w € (D).
Set Q(z) := zq'(2)p(q(2)), h(z) == v(q(z)) + Q(2). Suppose that (i) either h
is conver or Q(z) is starlike univalent in D and (ii) Re(zh'(2)/Q(2)) > 0 for
z € D. If p is analytic in D, p(0) = ¢(0) and satisfies

(1) v(p(2)) + 20 (2)e(p(2)) < v(4(2)) + 24 (2)p(a(2)),
then p < q and q is the best dominant.

Lemma 1.3 ([8, Corollary 3.4a, p. 120]). Let g be analytic in D and ¢ be
analytic in a domain D containing q(D) and suppose (i) Red(q(z)) > 0 and
either (ii) ¢ is convez, or (iii) Q(z) = 2¢'(2)d(q(2)) is starlike. If p is analytic
in D, p(0) = ¢(0), p(D) C D and p(z) + 2p'(2)Pp(p(2)) < q(2), then p < q.

2. Results associated with starlikeness

Let p be an analytic function in D with p(0) = 1. In the first result, condi-
tions on B are obtained so that the subordination

1+ﬂzp’(z)<1+4—;+%
implies p(z) < (24 2)/(2—2) or 1+ (1 —a)z or (1 4+ (1 —2a)2)/(1 — 2),
0<a<l).

Theorem 2.1. Let 3y =~ 1.90987 be the root of the equation 9 + 475 + 9082 —
21643 4+ 818%* = 0. Let p be an analytic function defined on D with p(0) = 1
satisfying

2
1 "(2) <14+ = + —,
+ Bzp'(2) + 3 + 3

then the following sharp results hold:
(3) If B < —45 or B> o, then p(z) < (2+ 2)/(2— ).
(b) If 18] > 2/(1 — ), (0 <a<1), then p(z) < 1+ (1 — a)z.
() If B < —-4/1—a) or B >4/3(1 —a), (0 < a < 1), then p(z) <
(14 (1-2a)2)/(1-2z).

Proof. Define the function ¢ : D — C by ¢(z) = (1 + Az)/(1 + Bz), (-1 <
B < A <1) with ¢(0) = 1. Let us define p(w) = 8 and Q(z) = z¢'(2)¢(q(z)).
Since ¢ is the convex univalent function, @ is starlike in ID. It follows from
Lemma 1.1, that the subordination

1+ B2p'(2) < 1+ Bzq'(2)
implies p(z) < ¢(z). The theorem is proved by computing S so that
222 B(A—DB)z

4z I _
(2) 1+?+T<1+ﬁzq(z)—1+7(1+32>2 = h(z).

Set ¥(z) = 1+42/3+22%/3. Clearly, y(D) = {w € C: | — 24+ 6w — 2| < 2}.

The subordination t(z) < h(z) holds if 9h(D) C C\ ¢(D). Thus, by using
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the definition of h as given in (2), the subordination ¥ (z) < h(z) holds if for

t € [-m,w|, we have
65(A — B)ett
44— =2
‘ W T By
Set

(4) w=u+iv=4+ (63(A— B)e")/(1+ Be™)2.
Then, condition (3) holds if |v/w — 2| > 2 which is same as |w| > 4 Re(y/w).
On further simplification, we get
(5) (u? +v* — 8u)? — 64(u® + v?) > 0.
(a) Take A=1/2,B=—1/2in (4). Then
246(5 cost — 4) 72Bsint

" + (5 —4cost)? ’ ! (5 —4cost)?

(3 > 9.

~

So, (5) reduces to
—768
(5 —4cost)?
+ 16(83 — 132/ + 363?) cos 2t — 320 cos 3t + 32003 cos 3t + 32 cos4t) > 0.
We need to find the values of 3 for which f(z) > 0in the interval -1 < 2 < 1,
where x = cost and
f(z) = —(1921 — 37128 + 23765% — 4328* — 80(37 — 695 + 3653%)x
4 16(83 — 1326 + 3632) (22 — 1) — 320(42> — 3x)
+ 3208 (42® — 3z) + 32(8z* — 827 + 1)).
A calculation shows that
f'(x) = —=16(=5 + 42)(25 + 1622 — 578 + 3652 4 202(—2 + 33)) = 0

ife =a1 =5/4orx =129 = (10—158—3,/-88+952%)/8 or & = x5 =

(10 — 158 + 34/—88+942)/8. Note that —1 < x9,2z3 < 1 if and only if
B > 8/9. These observations lead to two cases:

Case 1: 8 > 8/9. In this case, f"(z2) < 0 and f”(z3) > 0. Thus f(x)
attains its minimum value at © = x3, it follows that f(x) >0 for -1 <z <1
if and only if

flas) = 2757 (24 + 15382 + 401/—853 + 982 — 38(68 + 151/—853 + 952)) >0,

2
which is possible if 8 > Sy. Hence p(z) < ¢(z) if 8 > By ~ 1.90987.
Case 2: f < 8/9. In this case, f'(1) >0, f/(—=1) > 0 and f’(z) has no zero
in ] — 1,1[. Hence by Intermediate Value Theorem, f'(z) > 0 for —1 <z < 1.
Thus, f(z) >0 for —1 <2 <1 if and only if

f(=1) =27(=3+28)*(9+ 28) > 0,

(1921 — 37128 + 237652 — 4328* — 80(37 — 6943 + 363%) cost
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which is possible if 8 < —4.5. Hence p(z) < ¢(z) if 8 < —4.5. This completes
the proof for part (a).
(b) Take A=1—a, B=0, (0<a<1)in (4). Then

u=4468(1 —a)cost, v==6F(1—a)sint.
So, (5) takes the following form
g(t) :=48(278*(1 — a)* — 728%(1 — a)? — 16 — 645(1 — a) cost) > 0.

We need to find all possible values of 8 for which ¢(¢) is non negative for
t € [-m,w]. Clearly, g(t) attains its minimum value at t = 0 if 8 > 0 and
t==mif 8 <0. If 8 >0, then g(¢) > 0 if and only if

9(0) = 48(=2+ B(1 — 2))(2 + 36(1 — a))* > 0
which is true if 8 > 2/(1 — «). Next if 8 < 0, then g(¢) > 0 if and only if
g(m) =48(2+ B(1 — @) (=2 +3B(1 — @)’ > 0

which is possible if 5 < —2/(1 — «). Hence p(z) < ¢(2) if |8] > 2/(1 — ).
(c) Take A=1—-2a, B=—-1,(0<a<1)in (4). Then, we get

38(1 —
u:4—7ﬁ'(2 a), v =0.
sin“ ¢/2
So, (5) reduces to
(u? — 8u)* — 64u* > 0,
which on further simplification becomes u(u — 16) > 0 which implies that
(—4sin®t/2 + 38(1 — a))(B(1 — a) +4sin*t/2) >0

which is possible if 5 > 4/3(1 — «) or § < —4/(1 — «). This completes the
proof for (c). O

Next result depicts the conditions on 8 so that the subordination

! 4 2
W) g 4 27
p(z) 3 3
implies p(z) < (14 2)/(1—2z) or 1+ z where p is an analytic function in D with

p(0) =1.

Theorem 2.2. Let p be an analytic function defined on D with p(0) = 1
satisfying

148

2p'(2) 4z 222
14222
() <1+ 3 + 3

then the following sharp results hold:

(a) I 18] > \/(4V3 +8)/(3v/3) ~ L.694T, then p(=) < (1 +2)/(1 - 2).
(b) If B> 4 or B < =2, then p(z) <1+ z.

1+p
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Proof. Let the function ¢ : D — C be defined by ¢(z) = (1 + Az)/(1 + Bz),
(-1 < B < A < 1) with ¢(0) = 1. Let us define p(w) = f/w and Q(z) =
2q'(2)p(q(z)) = B(A— B)z/((14+ Az)(1 + Bz)). A computation shows that
2Q'(2) 1 — ABz?
Q(z)  (14+A2)(1+Bz)
Thus with 2z = re®, r € (0,1), t € [-m, 7], yields
R 1— ABz? _ (1—=ABr*)(1+ (A+ B)rcost + ABr?)
(1+A2)(1+Bz)) |1+ Are®|?|1 + Brei|? '
Since 1 + ABr? + (A + B)rcost > (1 — Ar)(1 — Br) > 0 for A+ B > 0 and
similarly, 1 + ABr? + (A + B)rcost > (1 + Ar)(1 + Br) > 0 for A+ B < 0,

it follows that Q(z) is starlike in D. An application of Lemma 1.1 reveals that
the subordination

/ /

S, 42
p(2) q(2)

implies p(z) < ¢(z). Now our result is established if we prove

4z 222 2q'(2) B(A — B)z
1+ —+——=<1 =1 = h(z).
© I I T = M e i By M)
Let 1(z) = 1+4z/3+22%/3. Then (D) = {w € C: | -2+ 6w —2| < 2}.

The subordination ¥ (z) < h(z) holds if 8h( ) C C\ 1/)( ). Thus, by using
the definition of h as given in (6), the subordination ¥(z) < h(z) holds if for
t € [—m, 7], we have

658(A — B)eit
| (\/4 + (14 Aeit)(1 + Beit) 2)
Set

(7) w=u+iv=4+(66(A— B)e")/((1+ Ae)(1 + Be™)).

Then, proceeding as in Theorem 2.1, we have to deduce (5).
(a) Take A=1,B = —11n (7). Then u =4 and v = 68/ sint. Substituting
uwand v in (5), we get

2
(3652 16> — 64 <16+ 3651) > 0.

sin’ ¢t sin

> 2.

Our problem is now to find all possible values of 8 for which p(z) > 0 for
x € [-1,1] where z = sint and p(z) = —162* — 72223% + 278*. Clearly,
ple) > —16 — 7282 + 278% > 0 it 8] > \/(4V3 + 8)/(3V/3) = 1.6047.

(b) Take A=1,B =0in (7). Then, v =4+ 33 and v = 3 tant/2. So, (5)
becomes

—3sect 5(3(32+645+4852 96%)+16(8+165+9432) cos t+32(1+23) cos 2t) > 0.
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Now our problem is to find all values of 8 for which ¢g(z) is non negative in the
whole interval —1 < x <1 where x = cost and

g(x) = —3(3(32+648+4858%—981) +16(8+168+98%)x +32(1+26)(22° - 1)).

A calculation shows that ¢'(z) = 0 if x = 29 = (-8 — 168 — 958?)/(8(1 + 28))
and ¢”(z) = —384(1 + 23). Let us first assume that S < —1/2. In this case,
g"(z0) > 0. Thus, ming(z) = g(zg) = 162842 + B8)/(1 + 28). Hence, g(x)
is non negative if and only if g(zp) is non negative which is possible only if
B < —2. Let us next assume that § > —1/2. In this case, we get ¢"(z) < 0
so that ¢'(z) < ¢/(—1) = —4324% < 0 and hence g(x) is decreasing function.
Therefore, g(z) > 0 if and only if g(1) = 3(—4 + £8)(4 + 38)® > 0 which can
happen only when 8 > 4. Hence we get our required result. (I

In the next result, the conditions on [ are derived so that the subordination

zp'(z) 4z  22°
14 = 422
o STt
implies p(z) < (1+2)/(1—=z) or (24 2)/(2 — 2) or 1+ z where p is an analytic
function in D with p(0) = 1.

Theorem 2.3. Let By ~ —1.90987 be the smallest real root of 9 —478+9082 +
216833 + 813% = 0. Let p be an analytic function defined on D with p(0) = 1
satisfying

1+3

1+

2p'(2) 4z 2z
P T3
then the following sharp results hold:

(a) If B >4 or B < —4/3, then p(z) < (1 +z)/(1 — z).

(b) If > 9/2 or < fo, then p(z) < (2+2)/(2 — ).

(c) If B>8 or < —8/3, thenp(z) <1+ z.
Proof. Define the function ¢ : D — C by ¢(z) = (1+ A2)/(14+ Bz), (-1 < B <
A < 1) and consider the function Q(z) = B2¢'(2)/q*(z) = B(A—B)z/(1+ Az)%.
Consider

2Q'(z)  1— Az
Q(z) 1+ Az
Let z =re, —m <t < 7,0 <r < 1. Then
1-— Az 1— A%p?
R = — > 0.
e(1+Az) |1+ Areit|?
Hence, @ is starlike in D. Now it is easy to see that the subordination
/ /
DE) g )
P*(2) (%)
implies p(z) < ¢(z) by Lemma 1.1. So our result will be proved if we can prove
4z  22° 2q'(2) B(A—-DB)z

() 0(e)i= Tk g+ T <1+ = 1+ s = b,

1+ 8
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So, we only need to show that for ¢ € [—x, 7], the following condition holds

668(A — B)eit
Let

, 68(A — B)eit
9) w:u—l—w:él—l—ﬁ.

Then, proceeding as in Theorem 2.1, we have to get (5).

(a) Take A =1,B = —1in (9). Then, u =4 +38sec?t/2 and v = 0. So, (5)
reduces to u(u — 16) > 0. Now, it is easy to see that our target is to find
conditions on /3 such that f(x) > 0 for —1 < 2 <1, where

T = cos é, f(z) = (42% + 3B)(B — 42?).

Clearly, f(z) >0if 5 <—4/3 or 5 > 4.
(b) Take A = 1/2, B = —1/2 in (9). Then,
4 33 4248 + 10(4 + 35) cost + 8 cos 2t 728sint
u= o fepsr
(5 + 4 cost)? ’ (5+ 4 cost)?

So, (5) reduces to
768
(54 4cost)?
—16(83 4 128(11 + 353)) cos 2t — 320(1 + f3) cos 3t — 32 cos4t) > 0.
We need to find the values of § for which g(x) > 0 in the interval —1 < x <1,
where x = cost and
g(x) = — (5 +4a)* —16(5 4 42)*(4 + 5z) 8 — 72(5 + 4x)? 5% + 43262
A calculation shows that
g (z) = —16(5+ 42)((5 + 4x)* + 3(19 + 202) 3 + 365%) = 0

ifx =x1 =—-5/4orx=u1xy=(—-10—-158—3/88+95%)/8 or x = 23 =
(=10 — 158+ 34/88 + 953%)/8. Note that xo, x3 are real numbers if and only if
B> 0or 8 < —8/9. These observations lead to three cases:

Case 1: 8 < —8/9. In this case, ¢”"(z2) > 0 and ¢”(z3) < 0. Thus, g(z)
attains its minimum value at = x4, it follows that g(z) > 0 for -1 <z <1
if and only if

2
glws) = @ (24 +400/38 + 952 + 38(68 + 515 + 151/86 + 9ﬁ2)) >0,

which is possible if 3 < —1.90987.

Case 2: 8 > 0. In this case, we get ¢’(z) < 0 so that ¢'(z) < ¢'(—1) =
—16(1 — 33 + 36/3%) < 0 and hence g(x) is a decreasing function. Therefore,
g(z) > 0 if and only if g(1) = 27(—=9+23)(3+28)® > 0 which can happen only
when 5 > 9/2.

(—1921 + 83(—464 — 2975 4 54/3%) — 80(37 4 693 + 363%) cos t
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Case 3: —8/9 < B < 0. In this case, /(1) < 0, f/(—1) < 0 and f'(z)
has no zero in | — 1, 1[. Hence by Intermediate Value Theorem, f'(z) < 0 for
—1 <2 <1. Thus f(z) >0 for —1 <2 <1 if and only if

F(1) =27(3+28)*(-9+28) >0,

which is possible if 8 < —3/2 or 8 > 9/2. But this is not possible as —8/9 <
B < 0. Hence, p(z) < q(z) if 8>9/2 or § < —1.90987.
(c) Take A=1,B =0 in (9). Then,

36
=44+ — =0.
“ +2c052t/2’ !

So, (5) reduces to p(x) > 0, x € [—1, 1], where
r=cost, p(x)=(—4+p8—4x)(4+ 38+ 4z)>.

Clearly, p'(z) < 0. So, p(z) > 0 if and only if p(1) = (=8 + 3)(8 +338)3 > 0
which is true if 5> 8 or 8 < —8/3. Hence proved. O
In the following theorem, we find the conditions on 3 so that p(z) < 1+
4z/3 + 222 /3, whenever
2p'(2) 4z = 222
D e
p(z)+ B o(2) + 3 + 3

Theorem 2.4. Let p be an analytic function defined on D with p(0) = 1
satisfying
zp'(z) 4z  22°

p(2)+ﬂp(z) <1+ +5, B>0

Then p(z) < 1+ 4z/3 + 22%/3.

Proof. Define the function ¢ : D — C by ¢(z) = 1+42/3+22%/3 with ¢(0) = 1.
Let us define ¢(w) = B/w (8 > 0). Consider

1
Re z :ﬁRe(—)>0.
) =
Next, define the function @ as

_ Bzd'(z) _ 4Bz(1+2)
q(z)  3+4z4222

From definition of @), we have

/ 2
2Q'(2) __ 3+62+22 — K(2).
Q(=) 3+ Tz4 622+ 228

For t € [—m, 7], we have

_ 1 5+ 4cost
R K it — .
e( (6 )) 2 + 29 +40cost + 12 cos 2t




736 V. RAVICHANDRAN AND K. SHARMA

Now, we will find minimum value of f(x) for —1 < x < 1, where
_ 54 4x
204407 + 12(222 — 1)

A calculation shows that f'(z) = 0if x = 21 = —(5+3)/dor & = x5 =
(=54 +/3)/4. Note that z; < —1 and f”(22) < 0. Also note that f(—1) =1
and f(1) = 1/9. So, f(z), —1 < x < 1 attains its minimum value at z = 1.
Hence, Re(K (e®)) > 11/18 > 0, this shows that @ is starlike in D. The result
now follows from Lemma 1.3. g

x =cost, f(x)

We close this section by obtaining the conditions on 3 so that p(z) < (1 +
z)/(1 — z), whenever
zp'(z) <1 4z  22°

p(z) + B ) IR

Theorem 2.5. Let p be an analytic function defined on D with p(0) = 1
satisfying

zp'(z) 4z  22°

p(z)+8 ) 3 T3

Then p(z) < (1+2)/(1 — 2).

Proof. For 8 = 0, result hold obviously. Let us assume that 5 > 0. Define
the function ¢ : D — C by ¢(z) = (1 + 2)/(1 — z). Also define v(w) = w and
p(w) = B/w. Clearly, the functions v and ¢ are analytic in C and ¢(w) # 0.
Consider the functions Q and h defined as follows:

Q) i= 2 (2)plg(2) = 2L 202 g
h(z) == v(q(2)) + Q(2) = q(z) + Q(2).

g(z) — 1-2°
Since the mapping z/(1 — 22) maps D onto the entire plane minus the two half

lines 1/2 <y < oo and —oco < y < —1/2, Q(2) is starlike univalent in D. A
computation shows that

zh'(2)  q(2) n 2Q'(z) 1 (1+= n 14 22

Qz) Q)  B\l-z 1—22"
Since, the mapping zh'(z)/Q(z) maps D onto the plane Rew > 0, all the
conditions of Lemma 1.2 are fulfilled and hence it follows that p(z) < ¢(z). In
order to complete the proof, we need to show that

4 222 ! 1+ 23
v =14 T 2 g p ) R 2

3 3 = h(z).

So, we only need to show that for —m <t < 7, the following condition holds

125ett 6(1 + e®)
‘(\/2+ (1 — e2it) + 1 — eit —2

> 2.
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Set . .

. 1283e" 6(1+e*)

w:u—l—w:—Q—i—(lieM) 1_ it
so that
1 t
w=—2 and o= OLHBFcost)
sint
Then, substituting the values of u and v in (5), we get
144 )
[ 443682+ 5)+6(1+ p)cost+2cos2t)” >0

which is possible for any 8. Hence, p(z) < ¢(z) if 8 > 0. O

3. Results associated with the function e*

In this section, we compute the sharp conditions on 3 so that p(z) < e,

whenever

zp'(2) zz;’(Z) . 1+g+2_22,
p(2) p*(2) 33

where p is an analytic function defined on D with p(0) = 1.

1+ B2p'(2) or 1+

1+

Theorem 3.1. Let p be an analytic function defined on D and p(0) = 1. Let
B >2e/3 or 8 < —2e. If the function p satisfies the subordination

4z 222
L+ Bzp'(2) < 1+ — + —,
3 3
then p also satisfies the subordination p(z) < e*. The result is sharp.

Proof. Let g be the convex univalent function defined by ¢(z) = e*. Then
clearly, 8zq¢/(z) is starlike in D. If the subordination
1+ Bzp/(2) < 1+ B2q'(2)
is satisfied, then p(z) < ¢(z) by Lemma 1.1. Tt suffices to show that
4z 22°
(10) 1+ ?Z + % <1+ B2¢'(z) =1+ Bze* := h(z).
Set ¥(z) = 1+42/3+22%/3. Clearly, y(D) = {w € C: | — 24 6w — 2| < 2}.

The subordination (z) < h(z) holds if Oh(D) C C\ ¢(D). Thus, by using
the definition of h as given in (10), the subordination (z) < h(z) holds if for
t € [—m, 7], we have

(11) ‘\/4+6ﬂ€itee“ 2‘ > 2.

Set w = u 4 iv = 4+ 68¢'e¢”. Then, we only need to show that |\/w — 2| > 2
which is same as |w| > 4Re(y/w). On further simplification, we get

(12) (u2 +0% — 8u)2 — 64(u2 + 02) > 0.
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Clearly, u = 4+68e°5t cos(t+sint) and v = 68e°°! sin(t +sint). Our problem
is now to find all possible values of 8 for which f(t) > 0 for ¢t € [—m, x|, where

f(t) = =16 — 728%e2o5t 4 278%* <05t — 643e°°5 cos(t + sint).

Since f(t) is an even function of ¢. It suffices to find the condition on g for
which f(t) > 0 for ¢ € [0, 7]. Note that
—(2e — 38)3(2e +
F0)= (-2 4 B)(2+ 3¢8)* and fir) = 2o =30V @t P

e
So, f(0) >0 and f(mr) >0if 8 < —2eor 8> 2¢/3. If B < —2¢ or 8 > 2¢/3,
then f is a decreasing function of ¢ and since f(w) > 0, we conclude that
f(@®) >0forte0,n]if B < —2eor > 2e/3. O

Theorem 3.2. Ifp is an analytic function defined on D with p(0) = 1 satisfying
the subordination
zp'(z) 4z 222

1+ —+ — > 2
o) =< +3+ 3 for |8l >

then p also satisfies the subordination p(z) < e*. The result is sharp.

1+p

Proof. Let the function ¢ : D — C be defined by ¢(z) = e®. Let us define

p(w) = B/w and Q(z) = 2¢'(2)p(q(z)) = Pz. Clearly, Q(z) is starlike in D.
An application of Lemma 1.1 reveals that the subordination

/ /
) )
p(2) q(2)
implies p(z) < ¢(z). Now, our result is established if we prove
4z 222 2q'(2)
=14+ —4+—=<1 =1 = h(z).
P(z) + 3 + 3 <145 () + Bz (2)

Since the subordination ¥(z) < h(z) holds if 9h(D) C C \ ¥(D), we only need
to show that for ¢ € [—m, 7],

‘\/4+ 63et — 2‘ > 2.

Set w = u+iv = 4 + 68e™ so that u = 4 + 6F cost and v = 6Fsint. Then,
proceeding as in Theorem 3.1, we need to show that (12) holds. After substi-
tuting the values of u and v in (12), we need to find the values of 8 for which
g(t) > 0 for t € [—m, x|, where

g(t) = —16 — 7282 + 278* — 643 cost.

Note that g(t) is an even function of ¢. So, we only need to consider g(t) for
t € [0,7]. Also note that ¢'(t) = 648sint. Let us first assume that g > 0.
In this case, g(t) is an increasing function. Therefore, g(¢) > 0 if and only if
g(0) = (=2 + B)(2 + 383)% > 0 which can happen only when 8 > 2. Let us next
assume that 8 < 0. In this case, g(t) being decreasing function, is non negative
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if and only if g(m) = (2 + 8)(—=2 + 38) is non negative which is possible if
B < —2. Hence, p(z) < q(z) if |3 > 2. O

Theorem 3.3. Let p be an analytic function defined on D and p(0) = 1. Let
B >2e or B < —2e/3. If the function p satisfies the subordination

1+p

< 14— =
P T3

then p(z) < e*. The result is sharp.

2p'(2) 4z 222
2

Proof. Define the function ¢ : D — C by ¢(z) = e* and consider the function
Q(z2) = Bzq'(2)/q*(2) = Bze™ 2. For z = x + iy € D, we have

Re (Zgéi’?)) =Re(l—z)=1—-2>0.

Hence, @ is starlike in ). Now, it is easy to see that by Lemma 1.1, the
subordination

2p'(2) 2q'(2)
p*(2) ¢*(2)

implies p(z) < q(z). So, our result will be proved if we can prove

1+6 <1+p

4 22 /
Y(z) =14 = + = <1+/3'ZZ((5))

Thus, we only need to show that Oh(D) C C\ ¢(D) which is equivalent to show

that for ¢ € [—m, 7],
}\/4 + 6Befte—e" — 2} > 2.

i(t47)

=14 Bze % := h(z2).

Set w = u+iv = 4+68e"e® . Then, proceeding as in Theorem 3.1, we need
to prove (12). Clearly, u = 4+ 68e~ 5! cos(t —sint) and v = 68e~ %' sin(t —
sint). Our problem reduces to find all possible values of 8 for which k(t) is non
negative in [—m, 7], where

E(t) = —16 — 723%e 728t £ 27B%e ™45t _ 648~ 5t cos(t — sint).

Observe that k(—t) = k(t) for t € [—m,w]. Thus, it is sufficient to find the
values of 3 for which k(¢) is non negative in [0, 7]. Note that

(—2e+ B)(2e + 38)3

et

k(0) = and  k(m) = (2 +eB)(—2 + 3eB)>.

Clearly, k(0) and k() both are non negative if § < —2e/3 or 8 > 2e. Also,
if 5 < —2e/3 or > 2e, then k is an increasing function of ¢ and k(0) is non
negative. Hence, k(t) > 0 for t € [0,n] if 5 < —2e/3 or § > 2e. O
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4. Results associated with the lemniscate of Bernoulli

In this section, we compute the conditions on 5 so that p(z) < 1+ z,
whenever
/
zp/(2)
1+
pH(2)

where p is an analytic function defined on D with p(0) = 1.

2p'(2) 4z 222
1y Z ez
p(2) + 3 * 3

(k=0,1,2) or p(z)+p

Theorem 4.1. Let 3 > 4v/2. Let p be an analytic function defined on D with
p(0) = 1 satisfying
4z 222
1+ Bzp/(2) < 1+ 3t 3

then p(z) < /1 + z. The result obtained is sharp.

Proof. Define the function ¢ : D — C by ¢(z) = /1 + 2z with ¢(0) = 1. Since
q(D) = {w: Jw? — 1| < 1} is the right half of the lemniscate of Bernoulli, ¢(ID)
is a convex set and hence ¢ is convex and zq'(z) is starlike in D. It follows from
Lemma 1.1, that the subordination

1+ B2p(2) < 1+ B2 (2)
implies p(z) < ¢(z). Now, our result is established if we prove the following:

— 4z 222 (o) — Bz _
P(z) =1+ —+ <1+qu(z)—1+2\/1+_z._

3 3
Now, proceeding as in earlier sections, it is enough to show that Oh(D) C
C\ ¥ (D) which is equivalent to show that for t € [—m, 7],

_3fet
V14 et

Taking w = u + iv = 4 + 3Be%/(v/1 + e*). Then, we only need to show that

h(z).

| 4+ 2|22.

(13) (u? +v? — 8u)? — 64(u? + v?) > 0.
A calculation shows that
wm gy BBBYY g, 305G

V= ———".
2cost/2 \/2cost/2

Using these values in (13), our problem reduces to find all possible values of 3
for which f(t) > 0 for ¢t € [—m, ], where

3
) =3 (512 — 278% + 512 cost

+ 645(98 cos(t/2) + 16v/2 cos®/2(t/2) cos(St/4))).
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Note that f(t) = f(—t) for any ¢, so it is sufficient to consider the interval
0 <t < . Also note that f/'(t) > 0 for § > 0, so f(¢) attains minimum value
at t = 0. Clearly,

f(0) = %3(1024 + 102426 4 57682 — 276*) > 0 for B > 4V/2.

Thus, f(t) > 0 if 3 > 4y/2. This completes the proof. d

Theorem 4.2. Let f < —4 or 8 > 8. Let p be an analytic function defined on
D with p(0) = 1 satisfying
2p'(2) 4z 222

14 =2 422
o) Sit3 g

then p(z) < /1 + z. The result obtained is sharp.

Proof. Let the function ¢ : D — C be defined by ¢(z) = /1 + z with ¢(0) = 1.
Let us define p(w) = B/w and Q(2) = z¢'(2)¢(q(2)) = fz/2(1+ z) which maps
D onto Rew < /4. So, Q(z) is starlike in D. An application of Lemma 1.1
reveals that the subordination

1+

/ !
AN q'(z)
p(2) q(2)
implies p(z) < ¢(z). Now, our result is established if we prove
4z 222 2q'(2) Bz
14 =14 =4+ — =<1 =14+ ———:=h(z).
(14) () + 3 + 3 q(2) 214 2) (2)

Hence, we only need to show that Oh(D) C C\ ¢(ID) which is same as to show

that for ¢t € [—m, 7],
it
|,/4+ v,

Set w = u+iv =4+ 38e /(1 + e'). Then, proceeding as in Theorem 4.1, our
target is to prove (13). Clearly,

3 3
u:4+7ﬁ and vzgtan

t
5
On substituting v and v in (13), we get

—644+96% 498 —16( (8+38)° +983 >0,
16 2 x2

where = cost/2. So, our problem reduces to find the values of 8 for which
G(z) > 0 for x € [0,1], where

G(z) = —12288(1 + B)z” — 3456322 + 8157

A calculation shows that

G'(z) = —768(928% + 6423(1 + 3))
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and hence G'(0) = G'(£38/(8v/—1 — 5)) = 0. Let us first assume that § > —1.
Then, G(z) is a decreasing function of 2 € [0, 1]. Consequently, we have G(z) >
0 for = € [0,1] provided G(1) = 3(=8 + B)(8 + 38)% > 0, which is equivalent
to f > 8. Next, assume that 8 < —1. In this case, G"(-38/(8v/—1—B)) =
138243% > 0. Thus G(z) attains its minimum value at z = —38/(8y/—1 — ),
it follows that G(z) > 0 for 0 < z < 1 if and only if

81544+ B)

G(-38/(8y/—1— =————2 >0,

(~38/(8v/T=5) = " >
provided 8 < —4. Hence, p(z) < ¢(z) for 8 < —4 or 8 > 8. O
Theorem 4.3. Let p be an analytic function defined on D and p(0) = 1. If the
function p satisfies the subordination
zp'(2) 4z  22°
1+7 <1+ —+=—, for B>8/2
p*(2) 33
then p(z) < V/1+ z. The result is sharp.
Proof. Define the function ¢ : D — C by ¢(z) = v/1+ z and consider the
function Q(z) = Bzq'(2)/¢*(2) = Bz/2(1 + 2)3/2. Clearly,

2Q' (%) 3z

a2 o S ol
Q(z) 2(1+2)

which maps D) onto plane Re w > 1/4. Hence, @ is starlike in D. An application

of Lemma 1.1 reveals that the subordination

zp'(2) 2q'(2)
1+6 <1+p
p*(2) ¢*(2)
implies p(z) < q(z). So, our result will be proved if we can prove
4z 222 2q'(2) z
=14+ -+ <1 =14 77y = h(2).
¥(2) + 3 + 3 +0 (z) + 52(1 + z)3/2 (2)

So, we only need to show that 0h(D) C C \ (D) which is equivalent to show
that for ¢ € [—m, 7],
BBt
(1 + eit)3/2
Set w = u+iv = 44 (38e)/(1+¢™)3/2. Then, proceeding as in Theorem 4.1,
we have to find § so that (13) holds. Clearly,

cost/4 Y sint/4
(2cost/2)3/2" 7 "7 (2cost/2)3/2
Our problem reduces to find all possible values of § for which k(t) is non
negative in [—m, 7], where

3 t t t t
k(t) = o {—16384 — 8192v/2/3 cos 1 sec?/? 3 230432 sec? 3 + 27/% sect 5} )

4+ 2| > 2.

u=4+ 30
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Observe that k(—t) = k(t) for ¢ € [—m,n]. Thus, it is sufficient to find the
values of 3 for which k(t) is non negative in [0,7]. For 8 > 8v/2, k is an
increasing function of ¢ and k(0) = —768 — 384+/23 — 10832 + 8134 /64 is non
negative. Hence, k(t) > 0, t € [0,7] for B > 8/2. O

Theorem 4.4. Let p be an analytic function defined on D with p(0) = 1
satisfying

/ 2
p(Z)JrﬂZﬁ(S) <1+ %’Z + 2% for B>12
then p(z) < v/1+ z.

Proof. Define the function ¢ : D — C by ¢(z) = v/1 + z. Consider the subordi-
nation

zp'(2) 2q'(2)
p(2) q(2)
Thus, in view of Lemma 1.2, the above subordination can be written as (1) by
defining the functions v and ¢ as

vw)=w and @(w) = B/w, (B #0).

Clearly, the functions v and ¢ are analytic in C and ¢(w) # 0. Let the functions
Q(z) and h(z) be defined as follows:

p(z)+ 8 <q(z)+5

= z2q' (2 z)) = Pzq(z) = = an
Q)= 2 (2)elal)) = =05 = 5 and
Bz

Since the mapping Q(z) maps D onto the plane Rew < /4, Q(z) is starlike
univalent in . A computation shows that

zh'(2) ‘/1+Z+ 1

Qiz) B 1+ 2

Now, the mapping 1/(1+ z) maps D onto plane Rew > 1/2 and Re(v/1 + z) >
0,z € D. Therefore, Re(zh/(2)/Q(2)) > 0, z € D if 8 > 0. Thus, all the
conditions of Lemma 1.2 are satisfied and hence, it follows that p(z) < ¢(z). In
order to complete the proof, we need to prove that
4z 222 z2q'(2) Bz
P(2) t3t+3 <q(z)+p ) V +z+2(1+z) (2)

So, we only need to show that 0h(D) C C\ (D) which is equivalent to show
that for ¢ € [—m, 7],

it
30e” o5,
1+ et

|\/2+6 1+ et +
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Thus, we have to show that

3ﬂ€it
1+ et

it/2

— |6e’t/1y /2 ey
€ o8 2+ 2005—

) it/2

> Re 6€Zt/41/2CO + 3pe -2
2 20055
t t 3

:6coszw/2cos§+7572

>%—2>16 for B> 12.

> 16.

‘2+6 1+ett +

Now,

3B€it
1+ et

‘—2+6 1+eit +

Hence, p(z) < ¢q(z) and this completes the proof. O

5. Applications

In this section we give sufficient conditions for functions f € A to belong to
the various subclasses of starlike functions.

Theorem 5.1. Let f € A and By = \/(4v3+8)/(3V3) = 1.6047. Then
following are the sufficient conditions for f € S*.

(1) The function f satisfies the subordination
1+6(1+zfu(z)_zf/(z)) +%+_ (18] = Bo).

f'z) f(2) 33
(2) The function f satisfies the subordination
+ Zf (?) 4z 2
1- 8+ p—21 DT (B<—4/3 or B=4).
72 S

(3) The function f satisfies the subordination

A1) < L) Zf’(Z)) 12 222
+8 — <1+ —+= (820).
e e I 3t 020
Proof. Let the function p : D — C be defined by p(z) = zf'(2)/f(z). Then p is
analytic in D with p(0) = 1. A calculation shows that

W) L ) )

=1+ _
p(z) /RN IC)
The results follow respectively from Theorems 2.2(a), 2.3(a) and 2.5. O

Theorem 5.2. Let f € A and fy = 1/(4V3 +8 /(3\f 1.6947. Then
following are the sufficient conditions for 22 f'(2)/f?(z) €
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(1) The function f satisfies the subordination

(zf(z)" _22/'(2) 4z | 222
! +6( 7(2) 7) ) <l+=+ (18] = Bo)-

3 3
(2) The function f satisfies the subordination

22 f'(2) ((Zf(z))” B 22f’(2)) 4z  22°
e P\ T m ) et 020
Proof. The two parts of the theorem follows by taking p(z) = 22f(2)/f?(z) in

Theorems 2.2(a) and 2.5 respectively. O

Theorem 5.3. Let fe A and 0 <a < 1.
(1) Let 5 < —4/(1 — ) or B > 4/3(1 — ). If the function f satisfies the
subordination
z2f'(2) 2f"(z)  z2f'(2) 4z  22°
s (1 - ) s
then f € S*(a).
(2) Let B < —=9/2 or 8 > By, where By is given by Theorem 2.1. If the
function f satisfies the subordination

zf'(2) ( 2f"(2) zf’(z)) 4z = 222

@\ e Tm ) T T

then f € S*[1/2,—1/2].

(3) Let B8 < By or B > 9/2, where By is given by Theorem 2.5. If the
function f satisfies the subordination

2"(2)

1+p

_ ) & 2
1-p5+28 Z]{(,(/;) <1+3+ 3

then f € S*[1/2,—1/2].
(4) Let || > 2/(1 — ). If the function f satisfies the subordination

10) (1, LSOt 2

1+5 ) 1)

f(z)
then f € §*[1 — «,0]
(5) Let B < —2 or 8> 4. If the function f satisfies the subordination

z2f"(2) zf’(z)> <1 4z 227

<14 =+ =
33

'z [z

14p (1

then f € §*[1,0].
(6) Let B8 < —8/3 or 8 > 8. If the function f satisfies the subordination
2f"(2)

_ ) & 2
1-B+p8 ) <1+ =+ =

then f € §*[1,0].
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Proof. The parts of the theorem are obtained by taking p(z) = zf'(2)/f(2) in
Theorems 2.1(c), 2.1(a), 2.3(b), 2.1(b), 2.2(b) and 2.3(c) respectively. O

Theorem 5.4. Let fe A and 0 < a < 1.

(1) If f satisfies 1 + Bzf"(2) < 1+ 42/3+22%2/3 (B < —4/(1 — ) or
B >4/3(1—«)), then f" < (14 (1 —2a)z)/(1 — z).

(2) If f satisfies 1 + Bzf"(2) < 1+ 42/3 +222/3 (B < —=9/2 or B > Bo,
where By is given by Theorem 2.1), then f' < (24 2)/(2 — z).

(3) If f satisfies 1 + Bzf"(2) < 1+ 42/3+22%/3 (|8] > 2/(1 — «)), then
[ <1+(1-a)e.

(4) If f satisfies

G PG .z 22
then -

Proof. The first three parts follows from Theorems 2.1(c), 2.1(a) and 2.1(b)
respectively by taking p(z) = f’(z). Next, applying Theorem 2.2(b) to the
function p(z) = 22f'(2)/f2(2) yields the last part of the theorem. O

Next theorem is an application of Theorem 2.4.

Theorem 5.5. Let f € A and 5 > 0.
(1) If f satisfies the subordination

2f(2) < ﬁ%)d%» 4z | 222
o P e ) e T
then f € S¢.

(2) If f satisfies

2f(2) (Crr 2y 22

7e P\ e ) M s
then 2 ) )
22 f'(z 4z 2z

The three parts of the next theorem are application of Theorems 3.1, 3.2
and 3.3 respectively.

Theorem 5.6. Let f € A. Then following are the sufficient conditions for
fes:.
(1) Let B < —2e or 8> 2e/3. The function f satisfies the subordination

2 ) (1 L2 Zﬂz)) cap k2R

e B

f'(z)  f(2)



SUFFICIENT CONDITIONS FOR STARLIKENESS 747

(2) Let |B| > 2. The function f satisfies the subordination
z2f"(2) zf’(z)) 4z 227

o (1 3 - ) < o

(3) Let B < —2e/3 or 8 > 2e. The function f satisfies the subordination

1+ Zf”(Z) 4 2 2
_ A ON 2z, 2=
1-8+8 e <Lt 3 + 3
f(2)
The two parts of the next theorem are application of Theorems 3.1 and 3.2
respectively.

Theorem 5.7. Let f € A.
(1) If f satisfies 1 + Bzf"(z) < 1+42/3+22%/3 (8 < —2e or B > 2¢/3),
then [/ < e*.
(2) If f satisfies

(1(2)" _2:/'(2) 12 22
1+6( ) 0 )<1+ 7t (8122),
then
() .
f3(2) '

The remaining results are application of Section 4.

Theorem 5.8. Let f € A. Then following are the sufficient conditions for
fes.
(1) The function f satisfies the subordination
zf'(2) ( 2f"(z) zf’(z)) 4z = 222
1+ 8 1+ - <1+ —+= (8>4V2).
o T e e 7=
(2) The function f satisfies the subordination

z2f"(2) zf’(z)) 4z 222
1+ﬁ(1+ - <1+—+— (B<—4 or B>28).
7 ) 373 :
(3) The function f satisfies the subordination
1420 4z 272
1= B4+ 8—1 s+ 2+ 2 (8>8V2).
Sic i3

(4) The function f satisfies the subordination

zf'(z) 2f"(z)  z2f'(2) 4z 222
o o1+ g - ) g R e
Theorem 5.9. Let f € A.
(1) If the function f satisfies 1 + Bzf"(z) < 1+ 42/3 +22%/3, B > 4V/2,
then ' < /1+ 2.
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(2) If the function f satisfies

(zf(z))"QZf/(z)) 4_’2 2_22 —4 or
s (S -560) <1 T et o 2w
then 5 )
221 (2
P VT

(3) If the function f satisfies

22f'(2) ((zf(z))”_sz’(z)) 4z 227
7o e e )Y e T 02
then z2f’(z)
FEOIRA
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