• 제목/요약/키워드: stability theorem

검색결과 321건 처리시간 0.023초

LQG design under plant perturbation and uncertain noise covariance (패러미터와 잡음전력이 불확실한 시스템에 대한 LQG 제어기 설계)

  • 오원근;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.203-207
    • /
    • 1991
  • In this paper, a linear stocastic dynamic system with norm - bounded plant perpurbations and norm - bounded noise covariarice is studied. Instead of Bellman-Gronwall inequality used in previous study, Lyapunov stability theorem is used to derive stability condition. The new condition is of more compact form than the previous result.

  • PDF

Exponential Asymptotic Stability in Perturbed Systems

  • Choi, Sung Kyu;Choi, Cheong Song
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제3권1호
    • /
    • pp.69-81
    • /
    • 1990
  • In this paper we investigate the problem of exponential asymptotic stability (EAS) in perturbed nonlinear systems of the differential system x' = f(t, x). Also, a simple method for constructing Liapunov functions is used to prove a kind of Massera type converse theorem.

  • PDF

ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Huang, Jinghao;Jung, Soon-Mo;Li, Yongjin
    • Bulletin of the Korean Mathematical Society
    • /
    • 제52권2호
    • /
    • pp.685-697
    • /
    • 2015
  • We investigate the stability of nonlinear differential equations of the form $y^{(n)}(x)=F(x,y(x),y^{\prime}(x),{\cdots},y^{(n-1)}(x))$ with a Lipschitz condition by using a fixed point method. Moreover, a Hyers-Ulam constant of this differential equation is obtained.

ON A STABILITY OF PEXIDERIZED EXPONENTIAL EQUATION

  • Chung, Jae-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • 제46권2호
    • /
    • pp.295-301
    • /
    • 2009
  • We prove the Hyers-Ulam stability of a Pexiderized exponential equation of mappings f, g, h : $G{\times}S{\rightarrow}{\mathbb{C}}$, where G is an abelian group and S is a commutative semigroup which is divisible by 2. As an application we obtain a stability theorem for Pexiderized exponential equation in Schwartz distributions.

STABILITY IN NONLINEAR NEUTRAL LEVIN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

  • Khelil, Kamel Ali;Ardjouni, Abdelouaheb;Djoudi, Ahcene
    • Korean Journal of Mathematics
    • /
    • 제25권3호
    • /
    • pp.303-321
    • /
    • 2017
  • In this paper we use the Krasnoselskii-Burton's fixed point theorem to obtain asymptotic stability and stability results about the zero solution for the following nonlinear neutral Levin-Nohel integro-differential equation $$x^{\prime}(t)+{\displaystyle\smashmargin{2}{\int\nolimits_{t-{\tau}(t)}}^t}a(t,s)g(x(s))ds+c(t)x^{\prime}(t-{\tau}(t))=0$$. The results obtained here extend the work of Mesmouli, Ardjouni and Djoudi [20].

TOPOLOGICAL STABILITY AND SHADOWING PROPERTY FOR GROUP ACTIONS ON METRIC SPACES

  • Yang, Yinong
    • Journal of the Korean Mathematical Society
    • /
    • 제58권2호
    • /
    • pp.439-449
    • /
    • 2021
  • In this paper, we introduce the notions of expansiveness, shadowing property and topological stability for group actions on metric spaces and give a version of Walters's stability theorem for group actions on locally compact metric spaces. Moreover, we show that if G is a finitely generated virtually nilpotent group and there exists g ∈ G such that if Tg is expansive and has the shadowing property, then T is topologically stable.

A GENERALIZED APPROACH OF FRACTIONAL FOURIER TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION

  • Mohanapriya, Arusamy;Sivakumar, Varudaraj;Prakash, Periasamy
    • Korean Journal of Mathematics
    • /
    • 제29권4호
    • /
    • pp.749-763
    • /
    • 2021
  • This research article deals with the Mittag-Leffler-Hyers-Ulam stability of linear and impulsive fractional order differential equation which involves the Caputo derivative. The application of the generalized fractional Fourier transform method and fixed point theorem, evaluates the existence, uniqueness and stability of solution that are acquired for the proposed non-linear problems on Lizorkin space. Finally, examples are introduced to validate the outcomes of main result.

GENERAL SYSTEM OF MULTI-SEXTIC MAPPINGS AND STABILITY RESULTS

  • Abasalt Bodaghi
    • Communications of the Korean Mathematical Society
    • /
    • 제38권2호
    • /
    • pp.509-524
    • /
    • 2023
  • In this study, we characterize the structure of the multivariable mappings which are sextic in each component. Indeed, we unify the general system of multi-sextic functional equations defining a multi-sextic mapping to a single equation. We also establish the Hyers-Ulam and Găvruţa stability of multi-sextic mappings by a fixed point theorem in non-Archimedean normed spaces. Moreover, we generalize some known stability results in the setting of quasi-𝛽-normed spaces. Using a characterization result, we indicate an example for the case that a multi-sextic mapping is non-stable.