1 |
W. Lee, S. Xu, F. Ye, Hyers-Ulam stability of Sahoo-Riedel's point, Appl. Math. Lett., 22(2009), 1649-1652.
DOI
|
2 |
T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
DOI
|
3 |
T. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, London, 2003.
|
4 |
S. M. Ulam, Problems in Modern Mathematics, Chapter 6, Wiley, New York 1964.
|
5 |
S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Florida, 2003.
|
6 |
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
DOI
|
7 |
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57(1951), 223-237.
DOI
|
8 |
Y. J. Cho, T. M. Rassias, R. Saadati, Stability of Functional Equations in Random Normed Spaces, Springer Optimization and Its Applications, 86, Springer, New York, 2013.
|
9 |
M. Das, T. Riedel, P. K. Sahoo, Hyers-Ulam stability of Flett's points, Appl. Math. Lett., 16(2003), 269-271.
DOI
|
10 |
T. M. Flett, A mean value theorem, Math. Gazette, 42(1958), 38-39.
DOI
|
11 |
D. H. Hyers, S. M. Ulam, On the stability of differential expressions, Math. Mag., 28(1954), 59-64.
DOI
|
12 |
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436
DOI
|
13 |
J. Huang, Y. Li, Hyers-Ulam stability of Pompeiu's point, Kyungpook Math. J., 55(2015), 103-107.
DOI
|
14 |
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27(1941), 222-224.
DOI
|
15 |
S. -M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, 48, Springer, New York, 2011.
|
16 |
H. -M. Kim, H. -Y. Shin, Approximation of almost Sahoo-Riedel's points by Sahoo-Riedel's points, Aequationes Math., 90(2016), 809815.
DOI
|