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GENERAL SYSTEM OF MULTI-SEXTIC MAPPINGS AND

STABILITY RESULTS

Abasalt Bodaghi

Abstract. In this study, we characterize the structure of the multivari-

able mappings which are sextic in each component. Indeed, we unify
the general system of multi-sextic functional equations defining a multi-

sextic mapping to a single equation. We also establish the Hyers-Ulam
and Găvruţa stability of multi-sextic mappings by a fixed point theorem

in non-Archimedean normed spaces. Moreover, we generalize some known

stability results in the setting of quasi-β-normed spaces. Using a charac-
terization result, we indicate an example for the case that a multi-sextic

mapping is non-stable.

1. Introduction

We say a functional equation Γ is stable if any function f satisfying the
equation Γ approximately must be near to an exact solution of Γ. Moreover, Γ is
hyperstable if any function ϕ fulfilling Γ approximately (under some conditions),
then it is an exact solution of Γ.

In two last decade, the stability problem for functional equations which
was initiated by Ulam [24] for group homomorphisms (answered by Hyers [14],
Aoki [2], Th. M. Rassias [20] and Găvruţa [23]) has been studied for multi-
ple variable mappings such as multi-additive, multi-quadratic, multi-cubic and
multi-quartic mappings which can be found for instance in [8], [10], [11], [18]
and [27]. We state their definitions as follows:

Let (V,+) be a commutative group, W be a linear space over rationals, and
n be an integer with n ≥ 2. A mapping f : V n −→W is called

(i) multi-additive if it satisfies the Cauchy’s functional equation A(x+y) =
A(x) +A(y) in each variable [10];

(ii) multi-quadratic if it fulfills the quadratic functional equation Q(x+y)+
Q(x− y) = 2Q(x) + 2Q(y) in all components [4, 11,27];

(iii) multi-cubic if it satisfies the cubic equation C(2x + y) + C(2x − y) =
2C(x+ y) + 2C(x− y) + 12C(x) in each variable [8];
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(iv) multi-quartic if it satisfies one of the following quartic equation in all
variables [1, 6, 17].

Q(x+ 2y) +Q(x− 2y) = 4Q(x+ y) + 4Q(x− y)− 6Q(x) + 24Q(y);

Q(2x+ y) +Q(2x− y) = 4Q(x+ y) + 4Q(x− y) + 24Q(x)− 6Q(y).

Note that the equations above have been introduced in [19] and [16], respec-
tively.

In [25], Xu et al. obtained the general solution of the sextic functional equa-
tion

f(x+ 3y)− 6f(x+ 2y) + 15f(x+ y)− 20f(x) + 15f(x− y)

− 6f(x− 2y) + f(x− 3y) = 720f(y)

for the first time. They also investigated the Ulam stability problem for it in
quasi-β-normed spaces via a fixed point method. Recall that the Hyers-Ulam
stability of the sextic functional equation

S(2x+ y) + S(2x− y) + S(x+ 2y) + S(x− 2y)(1.1)

= 20[S(x+ y) + S(x− y)] + 90[S(x) + S(y)]

has been studied by Ravi et al. [21].
It is worth mentioning that an alternative fixed point theorem presented in

[9] have been considered as a tool for the stability of multivariable mappings
such as multi-Jensen, multi-additive, multi-quadratic, multi-cubic and multi-
quartic mappings in non-Archimedean spaces which are available for instance
in [1], [3], [7], [12] and [26].

In this article, we introduce the multi-sextic mappings (taken from (1.1)).
We also include a characterization of such mappings. In fact, we prove that
every multi-sextic mapping can be shown a single functional equation and vice
versa (under some extra conditions). Moreover, we investigate the Hyers-Ulam
and Găvruţa stability for the multi-sextic mappings by applying two fixed
point methods in non-Archimedean normed and quasi-β-normed spaces [9].
As a result, we show that under some mild conditions a multi-sextic functional
equation can be hyperstable. Lastly, an appropriate counterexample is supplied
to invalidate the results in the case of singularity for the multi-sextic mappings.

2. Characterization of multi-sextic mappings

Throughout this paper, N and Q are the set of all positive integers and
rationals, respectively, and moreover N0 := N ∪ {0}, R+ := [0,∞). For any
l ∈ N0, n ∈ N, t = (t1, . . . , tn) ∈ {−1, 1}n and x = (x1, . . . , xn) ∈ V n we write
lx := (lx1, . . . , lxn) and tx := (t1x1, . . . , tnxn), where lx stands, as usual, for
the scaler product of l on x in the commutative group V .

Definition 2.1. Let V andW be vector spaces over Q, n ∈ N. A multivariable
mapping f : V n −→ W is called n-sextic or multi-sextic if f satisfies (1.1) in



GENERAL SYSTEM OF MULTI-SEXTIC MAPPINGS 511

each of its n arguments, that is

f(v1, . . . , vi−1, 2vi + v′i, vi+1, . . . , vn) + f(v1, . . . , vi−1, 2vi − v′i, vi+1, . . . , vn)

+f(v1, . . . , vi−1, vi + 2v′i, vi+1, . . . , vn)+f(v1, . . . , vi−1, vi − 2v′i, vi+1, . . . , vn)

= 20[f(v1, . . . , vi−1, vi + v′i, vi+1, . . . , vn)+f(v1, . . . , vi−1, vi − v′i, vi+1, . . . , vn)]

+ 90[f(v1, . . . , vi−1, vi, vi+1, . . . , vn) + f(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn)].

Let n ∈ N with n ≥ 2 and xni = (xi1, . . . , xin) ∈ V n, where i ∈ {1, 2}. We
shall denote xni by xi when no confusion can arise. For x1, x2 ∈ V n set

An = {An = (A1, . . . , An) |Aj ∈ {x1j , x2j , x1j ± x2j , x1j ± 2x2j}}

for all j ∈ {1, . . . , n}. Moreover, for pl ∈ N0 with 0 ≤ pl ≤ n, where l ∈ {1, 2, 3},
consider the subset An

(p1,p2,p3)
of An as follows:

An
(p1,p2,p3)

:={An ∈ An |Card{Aj : Aj = x1j} = p1,Card{Aj : Aj = x2j} = p2,

Card{Aj : Aj = x1j ± x2j} = p3}.

From now on, for the multi-sextic mappings, we use the following notations:

f
(
An

(p1,p2,p3)

)
:=

∑
An∈An

(p1,p2,p3)

f (An) ,(2.1)

and

f
(
An

(p1,p2,p3)
, z
)
:=

∑
An∈An

(p1,p2,p3)

f (An, z) (z ∈ V ).

In the next theorem, we describe a multi-sextic mapping as an equation.

Theorem 2.2. If f : V n −→ W is a multi-sextic mapping, then it fulfills the
equation ∑

q∈{−1,1}n

f(2x1 + qx2)(2.2)

=

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−1)n−p1−p2−p320p390p1+p2f
(
An

(p1,p2,p3)

)
for all x1, x2 ∈ V n, where f

(
An

(p1,p2,p3)

)
is defined in (2.1).

Proof. We prove f satisfies equation (2.2) by induction on n. For n = 1, it is
trivial that f fulfills equation (1.1). Suppose that (2.2) holds for some positive
integer n > 1. Then∑

q∈{−1,1}n+1

f
(
2xn+1

1 + qxn+1
2

)
= −

∑
q∈{−1,1}n

∑
t∈{−1,1}

f (xn1 + qxn2 , x1,n+1 + 2tx2,n+1)
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+ 20
∑

q∈{−1,1}n

∑
t∈{−1,1}

f (xn1 + qxn2 , x1,n+1 + tx2,n+1)

+ 90

 ∑
q∈{−1,1}n

f (xn1 + qxn2 , x1,n+1) +
∑

q∈{−1,1}n

f (xn1 + qxn2 , x2,n+1)


= −

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

∑
t∈{−1,1}

(−1)n−p1−p2−p320p390p1+p2

× f
(
An

(p1,p2,p3)
, x1,n+1 + 2tx2,n+1

)
+ 20

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

∑
t∈{−1,1}

(−1)n−p1−p2−p320p390p1+p2

× f
(
An

(p1,p2,p3)
, x1,n+1 + tx2,n+1

)
+ 90

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−1)n−p1−p2−p320p390p1+p2f
(
An

(p1,p2,p3)
, x1,n+1

)

+ 90

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−1)n−p1−p2−p320p390p1+p2f
(
An

(p1,p2,p3)
, x2,n+1

)

=

n+1∑
p1=0

n+1−p1∑
p2=0

n+1−p1−p2∑
p3=0

(−1)n+1−p1−p2−p320p390p1+p2f
(
An+1

(p1,p2,p3)

)
.

Comparing the first and the last terms, we can obtain the desired result. □

We remember that the binomial coefficient for all n, r ∈ N0 with n ≥ r is
defined and denoted by

(
n
r

)
:= n!

r!(n−r)! .

Definition 2.3. Given a mapping f : V n −→W .
(i) We say f satisfies (has) the 6-power condition in the jth variable if

f(z1, . . . , zj−1, 2zj , zj+1, . . . , zn) = 26f(z1, . . . , zj−1, zj , zj+1, . . . , zn)

for all z1, . . . , zn ∈ V n. The 6-power condition is also called the sextic condition.
(ii) If f(z1, . . . , zn) = 0 when the fixed zj is zero, then we say that f has

zero functional equation in the jth variable. Moreover, if f(z1, . . . , zn) = 0 for
any (z1, . . . , zn) ∈ V n with at least one zj is zero, we say f has zero functional
equation.

It is clear that every multi-sextic mapping fulfills the sextic condition in each
variable and thus it has zero functional equation. In other words, if a mapping
f : V n −→ W satisfies the sextic condition in the jth variable, then it has
zero functional equation in the same component. Under the sextic condition in
all components, every mapping satisfying equation (2.2) can be multi-sextic as
follows.
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Theorem 2.4. If f : V n −→ W fulfills equation (2.2) and has the sextic
condition in each variable, then f is a multi-sextic mapping.

Proof. Fix j ∈ {1, . . . , n}. Set

f∗(2x1j , x2j) := f (x11, . . . , x1,j−1, 2x1j + x2j , x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j−1, 2x1j − x2j , x1,j+1, . . . , x1n) ,

f∗(x1j , 2x2j) := f (x11, . . . , x1,j−1, x1j + 2x2j , x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j−1, x1j − 2x2j , x1,j+1, . . . , x1n) ,

f∗(x1j , x2j) := f (x11, . . . , x1,j−1, x1j + x2j , x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j−1, x1j − x2j , x1,j+1, . . . , x1n) ,

f∗(x1j) := f(x1) = f (x11, . . . , x1n) ,

and

f∗(x2j) := f (x11, . . . , x1,j−1, x2j , x1,j+1, . . . , x1n) .

Putting x2k = 0 for all k ∈ {1, . . . , n}\{j} in (2.2) and using the property of
having the sextic condition in each component, we get

2n−1 × 26(n−1)f∗(2x1j , x2j)

(2.3)

= 2n−1[f (2x11, . . . , 2x1,j−1, 2x1j + x2j , 2x1,j+1, . . . , 2x1n)

+ f (2x11, . . . , 2x1,j−1, 2x1j − x2j , 2x1,j+1, . . . , 2x1n)]

=
n−1∑
p1=0

n−1−p1∑
p2=0

[(
n− 1
p1

)(
n− 1− p1

p2

)
2n−1−p1−p22p2(−1)n−p1−p220p290p1

]
f∗(x1j , 2x2j)

+
n−1∑
p1=0

n−p1∑
p2=1

[(
n− 1
p1

)(
n− p1
p2 − 1

)
2n−p1−p22p2−1(−1)n−p1−p220p290p1

]
f∗(x1j , x2j)

+
n∑

p1=1

n−p1∑
p2=0

[(
n− 1
p1 − 1

)(
n− p1
p2

)
2n−p1−p22p2(−1)n−p1−p220p290p1

]
f∗(x1j)

+ 90
n−1∑
p1=0

n−1−p1∑
p2=0

[(
n− 1
p1

)(
n− 1− p1

p2

)
2n−1−p1−p22p2(−1)n−1−p1−p220p290p1

]
f∗(x2j)

= −
n−1∑
p1=0

n−1−p1∑
p2=0

[(
n− 1
p1

)(
n− 1− p1

p2

)
(−2)n−1−p1−p240p290p1

]
f∗(x1j , 2x2j)

+
n−1∑
p1=0

n−1−p1∑
p2=0

[(
n− 1
p1

)(
n− p1
p2

)
2n−1−p1−p22p2(−1)n−1−p1−p220p2+190p1

]
f∗(x1j , x2j)

+
n−1∑
p1=0

n−1−p1∑
p2=0

[(
n− 1
p1

)(
n− 1− p1

p2

)
2n−1−p1−p22p2(−1)n−1−p1−p220p290p1+1

]
f∗(x1j)
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+ 90
n−1∑
p1=0

n−1−p1∑
p2=0

[(
n− 1
p1

)(
n− 1− p1

p2

)
2n−1−p1−p22p2(−1)n−1−p1−p220p290p1

]
f∗(x2j)

= −
n−1∑
p1=0

[(
n− 1
p1

)
38n−1−p190p1

]
f∗(x1j , 2x2j)

+ 20

n−1∑
p1=0

[(
n− 1
p1

)
38n−1−p190p1

]
f∗(x1j , x2j)

+ 90

n−1∑
p1=0

[(
n− 1
p1

)
38n−1−p1−p290p1

]
f∗(x1j)

+ 90

n−1∑
p1=0

[(
n− 1
p1

)
38n−1−p1−p290p1

]
f∗(x2j)

= − 128n−1f∗(x1j , 2x2j) + 20× 128n−1f∗(x1j , x2j)

+ 90× 128n−1[f∗(x1j) + f∗(x2j)].

Relation (2.3) implies that

2f∗(2x1j , x2j) = −f∗(x1j , 2x2j) + 20f∗(x1j , x2j) + 90[f∗(x1j) + f∗(x2j)].

It follows from equality above that f is sextic in the jth variable. □

By means of Theorem 2.4, it is easily seen that the mapping f(z1, . . . , zn) =
c
∏n

j=1 z
6
j satisfies (2.2) and so this equation is called multi-sextic functional

equation.

3. Stability results for (2.2) in non-Archimedean normed spaces

In this section, we prove the Hyers-Ulam stability of the multi-sextic func-
tional equation (2.2) in non-Archimedean normed by applying a fixed point
theorem. We recall that for a field K with multiplicative identity 1, the char-

acteristic of K is the smallest positive number n such that

n-times︷ ︸︸ ︷
1 + · · ·+ 1 = 0.

Throughout, for two sets X and Y , the set of all mappings from X to Y is
denoted by Y X . The next theorem which is a key tool in obtaining our aim in
this paper, taken from [9, Theorem 1].

Theorem 3.1. Let the following hypotheses hold.

(H1) E is a nonempty set, Y is a complete non-Archimedean normed space
over a non-Archimedean field of the characteristic different from 2,
j ∈ N, g1, . . . , gj : E −→ E and L1, . . . , Lj : E −→ R+;

(H2) T : Y E −→ Y E is an operator satisfying the inequality

∥T λ(x)− T µ(x)∥ ≤ max
i∈{1,...,j}

Li(x) ∥λ(gi(x))− µ(gi(x))∥

for all λ, µ ∈ Y E, x ∈ E;
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(H3) Λ : RE
+ −→ RE

+ is an operator defined through

Λδ(x) := max
i∈{1,...,j}

Li(x)δ(gi(x)), δ ∈ RE
+, x ∈ E.

Moreover, a function θ : E −→ R+ and a mapping φ : E −→ Y fulfill the next
two conditions:

∥T φ(x)− φ(x)∥ ≤ θ(x), lim
l→∞

Λlθ(x) = 0, (x ∈ E) .

Then, for every x ∈ E, the limit liml→∞ T lφ(x) =: ψ(x) exists and the mapping
ψ ∈ Y E, defined in this way, is a fixed point of T with

∥φ(x)− ψ(x)∥ ≤ supl∈N0
Λlθ(x) (x ∈ E) .

For the rest of this section, given a mapping f : V n −→W , we consider the
difference operator Γf : V n × V n −→W defined via

Γf(x1, x2) :=
∑

q∈{−1,1}n

f(2x1 + qx2)

−
n∑

p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−1)n−p1−p2−p320p390p1+p2f
(
An

(p1,p2,p3)

)
for all x1, x2 ∈ V n, where f

(
An

(p1,p2,p3)

)
is defined in (2.1).

In the sequel, it is assumed that all mappings as f : V n −→W satisfying zero
condition. In the upcoming theorem, we establish the stability of functional
equation (2.2) from linear spaces to complete non-Archimedean normed spaces.

Theorem 3.2. Let β ∈ {−1, 1} be fixed, V be a linear space and W be a
complete non-Archimedean normed space over a non-Archimedean field of the
characteristic different from 2. Suppose that φ : V n×V n −→ R+ is a mapping
satisfying the equality

lim
l→∞

(
1

|2|6nβ

)l

φ(2lβx1, 2
lβx2) = 0(3.1)

for all x1, x2 ∈ V n. Assume also f : V n −→ W is a mapping satisfying the
inequality

∥Γf(x1, x2)∥ ≤ φ (x1, x2)(3.2)

for all x1, x2 ∈ V n. Then, there exists a unique solution S : V n −→ W of
(2.2) such that

∥f(x)− S(x)∥ ≤ supl∈N0

1

|2|n|2|6n β+1
2

(
1

|2|6nβ

)l

φ
(
2lβ+

β−1
2 , 0

)
(3.3)

for all x ∈ V n. Moreover, if S satisfies the sextic condition in each variable,
then it is a unique multi-sextic mapping.
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Proof. Putting x2 = 0 in (3.2) and using our assumptions, we have

∥2nf(2x)− Tf(x)∥ ≤ φ(x, 0)(3.4)

for all x := x1 ∈ V n (and for the rest of this proof, all the equations and
inequalities are valid for all x ∈ V n), where

T =

n∑
p1=0

n−p1∑
p2=1

(
n
p1

)(
n− p1
p2

)
2n−p1−p22p2(−1)n−p1−p220p290p1 .

On the other hand, we have

T =

n∑
p1=0

n−p1∑
p2=1

(
n
p1

)(
n− p1
p2

)
2n−p1−p22p2(−1)n−p1−p220p290p1(3.5)

=

n∑
p1=0

(
n
p1

)
38p290p1 = (38 + 90)n = 27n.

It follows from (3.4) and (3.5) that∥∥f(2x)− 26nf(x)
∥∥ ≤ 1

|2|n
φ(x, 0).(3.6)

Relation (3.6) can be rewritten as

∥f(x)− T f(x)∥ ≤ θ(x),(3.7)

where

θ(x) :=
1

|2|n|2|6n β+1
2

φ
(
2

β−1
2 x, 0

)
, T ξ(x) := 1

26nβ
ξ
(
2βx

)
for all ξ ∈ WV n

. Define Λη(x) := 1
|2|6nβ η

(
2βx

)
for all η ∈ RV n

+ , x ∈ V n. It is

easily seen that Λ has the form described in (H3) with E = V n, g1(x) := 2βx
for L1(x) =

1
|2|6nβ . On the other hand, we have

∥T λ(x)− T µ(x)∥ =

∥∥∥∥ 1

26nβ
λ(2βx)− 1

26nβ
µ(2βx)

∥∥∥∥
≤ L1(x) ∥λ(g1(x))− µ(g1(x))∥

for all λ, µ ∈WV n

. It follows from the above relation that the hypothesis (H2)
is true. Moreover, one can check by induction on l that for any l ∈ N, we find

Λlθ(x) :=

(
1

|2|6nβ

)l

θ
(
2lβx

)
=

1

|2|n|2|6n β+1
2

(
1

|2|6nβ

)l

φ
(
2lβ+

β−1
2 , 0

)
.(3.8)

It concludes from (3.7) and (3.8) that all assumptions of Theorem 3.1 are
satisfied and so there exists a unique solution S : V n −→W of (2.2) such that
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S(x) = liml→∞
(
T lf

)
(x), and (3.3) holds as well. We also can checked by

induction on l that∥∥Γ (
T lf

)
(x1, x2)

∥∥ ≤
(

1

|2|6nβ

)l

φ
(
2lβx1, 2

lβx2
)

(3.9)

for all x1, x2 ∈ V n. Taking l → ∞ in (3.9) and using (3.1), we obtain
ΓS (x1, x2) = 0 for all x1, x2 ∈ V n and hence equation (2.2) is valid for S.
The last assertion follows from Theorem 2.4. This finishes the proof. □

From here to the rest of this section, V is a non-Archimedean normed space
and W is a complete non-Archimedean normed space over a non-Archimedean
field of the characteristic different from 2. In addition, we assume that |2| < 1.
The following corollaries are taken from Theorem 3.2 regarding the stability of
(2.2).

Corollary 3.3. Given δ > 0. Let f : V n −→ W be a mapping satisfying the
inequality

∥Γf (x1, x2)∥ ≤ δ

for all x1, x2 ∈ V n. Then, there exists a unique solution S : V n −→ W of
(2.2) such that

∥f(x)− S(x)∥ ≤ 1

|2|n
δ

for all x ∈ V n. In addition, if S satisfies the sextic condition in each variable,
then it is a multi-sextic mapping.

Proof. Note that |2| < 1. Choosing φ (x1, x2) = δ for the case β = −1 of
Theorem 3.2, we get liml→∞ |2|6nlδ = 0, and hence (3.1) is true in Theorem
3.2. The last result follows from Theorem 2.4. □

Corollary 3.4. Let p ∈ R fulfills p ̸= 6n. If f : V n −→ W is a mapping
satisfying the inequality

∥Γf (x1, x2)∥ ≤
2∑

k=1

n∑
j=1

∥xkj∥p

for all x1, x2 ∈ V n, then there exists a unique solution S : V n −→ W of (2.2)
such that

∥f(x)− S(x)∥ ≤

{
1

|2|n|2|6n
∑n

j=1 ∥x1j∥p, p > 6n,
1

|2|n|2|p
∑n

j=1 ∥x1j∥p, p < 6n

for all x = x1 ∈ V n. Moreover, if S has the sextic condition in all components,
then it is a multi-sextic mapping.

Proof. Set φ(x1, x2)=
∑2

k=1

∑n
j=1 ∥xkj∥p. Then, φ

(
2lx1, 2

lx2
)
= |2|lpφ (x1, x2).

Now, Theorem 3.2 and Theorem 2.4 can be applied to arrive the result. □
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Under some conditions the functional equation (2.2) can be hyperstable as
follows.

Corollary 3.5. Let pkj > 0 for k ∈ {1, 2} and j ∈ {1, . . . , n} such that

2∑
k=1

n∑
j=1

pkj ̸= 6n.

If f : V n −→W is a mapping satisfying the inequality

∥Γf (x1, x2)∥ ≤
2∏

k=1

n∏
j=1

∥xkj∥pkj

for all x1, x2 ∈ V n, then f satisfies (2.2). In particular, if f has the sextic
condition in each variable, then it is multi-sextic.

Proof. Defining φ (x1, x2) =
∏2

k=1

∏n
j=1 ∥xkj∥

pkj in Theorem 3.2, and applying
Theorem 2.4, we reach the desired result. □

4. Stability Results for (2.2) in quasi-β-normed spaces

Here, we recall some basic facts regarding the setting of quasi-β-normed
space.

Definition 4.1. Let β be a fix real number with 0 < β < 1, and K denote
either R (real numbers) or C (complex numbers). Suppose that X is a linear
space over K. A quasi-β-norm is a real-valued function on X fulfilling the
following conditions:

(i) ∥x∥ ≥ 0 for all x ∈ X and ∥x∥ = 0 if and only if x = 0;
(ii) ∥tx∥ = |t|β |∥x∥ for all x ∈ X and t ∈ K;
(iii) There is a constant M ≥ 1 such that ∥x + y∥ ≤ M(∥x∥ + ∥y∥) for all

x, y ∈ X.

When β = 1, the norm above is a quasinorm. Recall that M is the modulus
of concavity of the norm ∥ · ∥. Moreover, if ∥ · ∥ is a quasi-β-norm on X,
the pair (X, ∥ · ∥) is said to be a quasi-β-normed space. Similar to normed
spaces, a complete quasi-β-normed space is called a quasi-β-Banach space. For
0 < p ≤ 1, if ∥x+y∥p ≤ ∥x∥p+∥y∥p for all x, y ∈ X, then the quasi-β-norm ∥·∥
is called a (β, p)-norm. In this case, every quasi-β-Banach space is said to be a
(β, p)-Banach space. By the Aoki-Rolewicz Theorem [22], each quasi-norm is
equivalent to some p-norm.

Next, by using an idea of Găvruta [23], we prove the stability of (2.2) in
quasi-β-normed spaces by applying the following fixed point lemma which was
proved in [25, Lemma 3.1].

Lemma 4.2. Let j ∈ {−1, 1} be fixed, a, s ∈ N with a ≥ 2. Suppose that X is
a linear space, Y is a (β, p)-Banach space with (β, p)-norm ∥ · ∥Y . If ψ : X −→
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[0,∞) is a function such that there exists an L < 1 with ψ(ajx) < Lajsβψ(x)
for all x ∈ X and f : X −→ Y is a mapping satisfying

∥f(ax)− asf(x)∥Y ≤ ψ(x)

for all x ∈ X, then there exists a uniquely determined mapping F : X −→ Y
such that F (ax) = asF (x) and

∥f(x)− F (x)∥Y ≤ 1

asβ |1− Lj |
ψ(x)

for all x ∈ X. Moreover, F (x) = liml→∞
f(ajlx)
ajls for all x ∈ X.

Theorem 4.3. Let j ∈ {−1, 1} be fixed, V be a linear space and W be a (β, p)-
Banach space and φ : V n × V n −→ R+ be a function such that there exists an
0 < L < 1 with φ(2jx1, 2

jx2) ≤ 26njβLφ(x1, x2) for all x1, x2 ∈ V n. Suppose
that a mapping f : V n −→W fulfilling the inequality

(4.1) ∥Γf(x1, x2)∥W ≤ φ(x1, x2)

for all x1, x2 ∈ V n. Then, there exists a unique solution S : V n −→ W of
(2.2) such that

(4.2) ∥f(x)− S(x)∥W ≤ 1

|1− Lj |
1

27nβ
φ(x, 0)

for all x ∈ V n. Moreover, if S satisfies the sextic condition in each variable,
then it is a unique multi-sextic mapping.

Proof. Similar to the proof of Theorem 3.2, by putting x2 = 0 in (4.1) and
using our assumptions, we have∥∥f(2x)− 26nf(x)

∥∥
W

≤ 1

2nβ
φ(x, 0)

for all x := x1 ∈ V n. By Lemma 4.2, there exists a unique mapping S : V n −→
W such that S(2x) = 26nS(x) and

∥f(x)− S(x)∥W ≤ 1

|1− Lj |
1

27nβ
φ(x, 0)

for all x ∈ V n. It remains to show that S is a multi-sextic map. Here, we note

from Lemma 4.2 that for all x ∈ V n, S(x) = liml→∞
f(2jlx)
26njl . Now, by (4.1),

we have ∥∥∥∥Γf(2jlx1, 2jlx2)26njl

∥∥∥∥
W

≤ 2−6njlβφ(2jlx1, 2
jlx2)

≤ 2−6njlβ(26njβL)lφ(x1, x2)

= Llφ(x1, x2)

for all x1, x2 ∈ V n and l ∈ N. Letting l → ∞ in the above inequality, we
observe that ΓS(x1, x2) = 0 for all x1, x2 ∈ V n. This means that S satisfies
(2.2). The last assertion follows from Theorem 2.4. □
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The next corollary is a direct consequences of Theorem 3.2 concerning the
stability of (2.2) when the norm of Γf(x1, x2) is controlled by sum of variables
norms of x1 and x2 with positive powers.

Corollary 4.4. Let V be a quasi-α-normed space with quasi-α-norm ∥ · ∥V ,
and W be a (β, p)-Banach space with (β, p)-norm ∥·∥W . Let θ and λ be positive

numbers with λ ̸= 6nβ
α . If a mapping f : V n −→W fulfilling the inequality

∥Γf(x1, x2)∥W ≤ θ

2∑
k=1

n∑
j=1

∥xkj∥λV

for all x1, x2 ∈ V n, then there exists a unique solution S : V n −→ W of (2.2)
such that

∥f(x)− S(x)∥W ≤


θ

2nβ(26nβ−2αλ)

∑n
j=1 ∥x1j∥λV , λ ∈

(
0, 6nβ

α

)
,

2αλθ
27nβ(2αλ−26nβ)

∑n
j=1 ∥x1j∥λV , λ ∈

(
6nβ

α ,∞
)

for all x = x1 ∈ V n. In particular, if S satisfies the sextic condition in all
variables, then it is a unique multi-sextic mapping.

Here, we present an elementary lemma without proof as follows.

Lemma 4.5. If a function g : R −→ R is a continuous and satisfies (1.1),
then it has the form g(x) = cx6 for all x ∈ R, where c = f(1).

In the following result, we extend Lemma 4.5 for several variables functions.
For doing this, we use an idea taken from the proof of [15, Theorem 13.4.3].

Proposition 4.6. Let f : Rn −→ R be a continuous n-sextic function. Then,
there exists a constant c ∈ R such that

f(x1, . . . , xn) = c

n∏
j=1

x6j(4.3)

for all x1, . . . , xn ∈ R.

Proof. We argue the proof by induction on n. For n = 1, (4.3) is true in view
of Lemma 4.5. Let (4.3) hold for n ∈ N. Assume that f : Rn+1 −→ R is a
continuous (n + 1)-sextic function. Fix the n variables x1, . . . , xn. Then, the
function y 7→ f(x1, . . . , xn, y) as a function of y is sextic and continuous, and
so there exists a constant c ∈ R such that

(4.4) f(x1, . . . , xn, y) = cy6, (y ∈ R).

Note that c depends on x1, . . . , xn, and indeed

(4.5) c = c(x1, . . . , xn).

Letting y = 1 in (4.4) and applying (4.5), we get

c = c(x1, . . . , xn) = f(x1, . . . , xn, 1).
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Since f is (n+ 1)-sextic, it follows that c is an n-sextic function and hence by
the induction hypothesis there exists a real number c′ such that

(4.6) c = c(x1, . . . , xn) = c′
n∏

j=1

x6j .

Now, the result follows from (4.4) and (4.6). □

We end the paper by the following counterexample for multi-sextic mappings
on Rn that its idea is taken from [5] (see also [13]). In fact, we show the
hypothesis λ ̸= 6n can not be removed in Corollary 4.4 when V = W = R in
the case that α = β = 1.

Example 4.7. Let δ > 0 and n ∈ N. Put µ = 26n−1
212nS δ, where

S ≥ 22n +

n∑
p1=0

n−p1∑
p2=0

n−p1−p2−p3∑
p3=0

20p390p1+p2 .

Define the function ψ : Rn −→ R through

ψ(r1, . . . , rn) =

{
µ
∏n

j=1 r
6
j for all rj with |rj | < 1,

µ otherwise.

Hence, ψ(r1, . . . , rn) ≤ µ for all (r1, . . . , rn) ∈ Rn. Using the function ψ,
consider the function f : Rn −→ R defined via

f(r1, . . . , rn) =

∞∑
l=0

ψ(2lr1, . . . , 2
lrn)

26nl
, (rj ∈ R).

It is obvious that f is an even function in each variable and non-negative.
Moreover, ψ is continuous and bounded by µ. It is known that f is a uniformly
convergent series of continuous functions and thus it is continuous and bounded.

In other words, for each (r1, . . . , rn) ∈ Rn, we have f(r1, . . . , rn) ≤ 26n

26n−1µ. Put

xi = (xi1, . . . , xin), where i ∈ {1, 2}. We claim that

|Γf (x1, x2)| ≤ δ

2∑
i=1

n∑
j=1

x6nij(4.7)

for all x1, x2 ∈ Rn. It is clear that (4.7) is valid for x1 = x2 = 0. Assume that

x1, x2 ∈ Rn with
∑2

i=1

∑n
j=1 x

6n
ij < 1

26n . Thus, there exists a positive integer
N such that

1

26n(N+1)
<

2∑
i=1

n∑
j=1

x6nij <
1

26nN
.(4.8)

Hence, x6nij <
∑2

i=1

∑n
j=1 x

6n
ij < 1

26nN and so 2N−1|xij | < 1 for all i ∈ {1, 2}
and j ∈ {1, . . . , n}. If y1, y2 ∈ {xij | i ∈ {1, 2}, j ∈ {1, . . . , n}}, then

{2N−1| y1 ± y2|, 2N−1|y1 ± 2y2|, 2N−1|2y1 ± y2|} ⊆ (−1, 1).
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Since ψ is a multi-sextic function on (−1, 1)n, Γψ
(
2lx1, 2

lx2
)
= 0 for all l ∈

{0, 1, 2, . . . , N − 1}. It follows from the last equality and relation (4.8) that∣∣Γf (2lx1, 2lx2)∣∣∑2
i=1

∑n
j=1 x

6n
ij

≤
∞∑

l=N

∣∣Γψ (
2lx1, 2

lx2
)∣∣

26nl
∑2

i=1

∑n
j=1 x

6n
ij

≤
∞∑
l=0

µS

26n(l+N)
∑2

i=1

∑n
j=1 x

6n
ij

≤ µS26n
∞∑
l=0

1

26nl

= µS
212n

26n − 1
= δ

for all x1, x2 ∈ Rn. If
∑2

i=1

∑n
j=1 x

6n
ij ≥ 1

26n , then∣∣Γf (2lx1, 2lx2)∣∣∑2
i=1

∑n
j=1 x

6n
ij

≤ 212n

26n − 1
µS = δ.

Therefore, f fulfills (4.7) for all x1, x2 ∈ Rn. Now, suppose contrary to our
claim, that there are a number γ ∈ [0,∞) and a multi-sextic function S :
Rn −→ R such that

|f(r1, . . . , rn)− S(r1, . . . , rn)| < γ

n∑
j=1

r6j .

Without loss of generality, one can take a number b ∈ [0,∞) so that γ
∑n

j=1 r
6
j

≤ b
∏n

j=1 r
6
j . Hence, |f(r1, . . . , rn) − S(r1, . . . , rn)| < b

∏n
j=1 r

6
j for all

(r1, . . . , rn) ∈ Rn. By Proposition 4.6, there exists a constant c ∈ R such
that S(r1, . . . , rn) = c

∏n
j=1 r

6
j , and thus

(4.9) f(r1, . . . , rn) ≤ (|c|+ b)

n∏
j=1

r6j

for all (r1, . . . , rn) ∈ Rn. On the other hand, consider p ∈ N such that (p +
1)µ > |c| + b. If r = (r1, . . . , rn) belongs to Rn such that rj ∈

(
0, 1

2p

)
for all

j ∈ {1, . . . , n}, then 2lrj ∈ (0, 1) for all l = 0, 1, . . . , p. Thus, we get

f(r1, . . . , rn) =

∞∑
l=0

ψ
(
2lr1, . . . , 2

lr2
)

26nl

=

p∑
l=0

µ26nl
∏n

j=1 r
6
j

26nl

= (p+ 1)µ

n∏
j=1

r6j > (|c|+ b)

n∏
j=1

r6j .
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The relation above leads us to a contradiction with (4.9).

Acknowledgement. The author sincerely thanks the anonymous reviewer for
the careful reading the first draft of paper.
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