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ON A STABILITY OF PEXIDERIZED
EXPONENTIAL EQUATION

Jaeyoung Chung

Abstract. We prove the Hyers-Ulam stability of a Pexiderized exponen-
tial equation of mappings f, g, h : G×S → C, where G is an abelian group
and S is a commutative semigroup which is divisible by 2. As an applica-
tion we obtain a stability theorem for Pexiderized exponential equation
in Schwartz distributions.

1. Introduction

Let f be a map from a vector space (or a semi group) G to the field C of
complex numbers satisfying the inequality

(1.1) |f(x + y)− f(x)f(y)| ≤ ε for all x, y ∈ G.

Then f is either bounded or exponential (see [2], [3]).
When we consider the above stability problem in the spaces of generalized

functions such as the Schwartz tempered distributions, Fourier hyperfunctions
we encounter some stability problem of functional equation with time variables
of positive real numbers while converting given distributional version of the
stability problem to classical one. In this paper, we consider the stability
problem of Pexiderized exponential equation with time variable

(1.2) |f(x + y, t + s)− g(x, t)h(y, s)| ≤ ε, x, y ∈ G, t, s ∈ S,

where f, g, h : G × S → C and G is an abelian group and S is a commutative
semigroup divisible by 2. As we shall see in Section 3, the stability problem
(1.2) appears when we deal with the distributional analogue of the Pexiderized
version of the stability of (1.1) (see [5, 6]). From now on, a function m from a
semigroup 〈S, +〉 to the field C is said to be exponential provided m(x + y) =
m(x)m(y). As a main result we prove the following stability theorem.
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Theorem 1.1. Let f, g, h : G × S → C satisfy (1.2). Then either there exist
C1, C2, C3 > 0 such that

(1.3) |g(x, t)| ≤ C1, |h(x, t)| ≤ C2, |f(x, t)| ≤ C3

for all (x, t) ∈ G× S, or else
(1.4)

g(x, t) = λ1m(t)p(x), h(x, t) = λ2m(t)p(x), |f(x, t)− λ1λ2m(t)p(x)| ≤ ε,

where λ1, λ2 ∈ C and m : S → C and p : G → C are exponentials.

In particular if we let G = {0} we have p(x) ≡ 1 or 0. Thus as a direct
consequence of the result we have

Corollary 1.2. Let f, g, h : S → C satisfy

(1.5) |f(t + s)− g(t)h(s)| ≤ ε, t, s ∈ S.

Then either there exist C1, C2, C3 > 0 such that

(1.6) |g(t)| ≤ C1, |h(t)| ≤ C2, |f(t)| ≤ C3

for all t ∈ S, or else

(1.7) g(t) = λ1m(t), h(t) = λ2m(t), |f(t)− λ1λ2m(t)| ≤ ε,

where λ1, λ2 ∈ C and m : S → C is an exponential.

Let G = Rn and S = (0,∞) and assume that f, g, h : Rn × (0,∞) → C are
continuous functions. Then we have

Corollary 1.3. Let f, g, h : Rn × (0,∞) → C satisfy

(1.8) |f(x + y, t + s)− g(x, t)h(y, s)| ≤ ε, x, y ∈ Rn, t, s > 0.

Then either there exist C1, C2, C3 > 0 such that

(1.9) |g(x, t)| ≤ C1, |h(x, t)| ≤ C2, |f(x, t)| ≤ C3

for all (x, t) ∈ Rn × (0,∞), or else

(1.10) g(x, t) = λ1e
λt+c·x, h(x, t) = λ2e

λt+c·x, |f(x, t)− λ1λ2e
λt+c·x| ≤ ε,

where λ1, λ2, λ ∈ C and c ∈ Cn.

2. Proofs

Here we exclude the trivial cases g(x, t) ≡ 0 or h(x, t) ≡ 0. Replacing (x, t)
by (y, s) and (y, s) by (x, t) in (1.2), respectively, and using triangle inequality
we have

(2.1) |g(x, t)h(y, s)− g(y, s)h(x, t)| ≤ 2ε
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for all x, y ∈ G, t, s ∈ S. Since we exclude the trivial cases where g(x, t) ≡ 0
or h(x, t) ≡ 0, it follows from the inequality (2.1) that there exist constants
c1, c2, d1, d2 ≥ 0 such that

|g(x, t)| ≤c1|h(x, t)|+ d1,(2.2)

|h(x, t)| ≤c2|g(x, t)|+ d2(2.3)

for all x ∈ G, t ∈ S. It follows from (2.2) and (2.3) that g(x, t) is bounded
if and only if h(x, t) is bounded. Assume that h(x, t) is bounded. Putting
y = 0, s = t in (2.1) we get (1.3). Now if h(x, t) is unbounded, then we
can choose (yn, sn) ∈ Rn × S so that|h(yn, sn)| → ∞ as n → ∞. Putting
y = yn, s = sn in (1.2), dividing by |h(yn, sn)| and letting n →∞, we have

(2.4) g(x, t) = lim
n→∞

f(x + yn, t + sn)
h(yn, sn)

.

Thus it follows from (1.2) and (2.4) that

g(x + y, t + s)g(0, r) = lim
n→∞

f(x + y + yn, t + s + sn) g(0, r)
h(yn, sn)

= lim
n→∞

g(x, t)h(y + yn, s + sn) g(0, r) + R1

h(yn, sn)

= lim
n→∞

g(x, t)f(y + yn, s + r + sn) + R1 + R2

h(yn, sn)

= g(x, t) g(y, s + r) + lim
n→∞

R1 + R2

h(yn, sn)
,

where |R1| ≤ ε|g(0, r)|, |R2| ≤ ε|g(x, t)|, which implies

(2.5) g(x + y, t + s)g(0, r) = g(x, t) g(y, s + r)

for all x, y ∈ G and t, s, r ∈ S. Putting x = y = 0, r = r0 in (2.5) and
multiplying g(0, r0) in the result we have

g(0, t + s)g(0, r0)2 = g(0, t)g(0, s + r0)g(0, r0)

= g(0, t)g(0, s)g(0, 2r0),

which implies

(2.6) g(0, t) = λ1m1(t)

for some 0 6= λ1 ∈ C and some exponential m1.
On the other hand, putting x = s = 0 in (2.5) we have

(2.7) g(y, t)g(0, r) = g(0, t)g(y, r).

If g(0, r) = 0 for all r ∈ S, it follows from (2.5) that g ≡ 0. Thus there exists
r0 ∈ S such that g(0, r0) 6= 0 and it follow from (2.7) that

(2.8) g(y, t) = g(0, t) p(y).
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Putting (2.8) in (2.5) we have

(2.9) p(x + y) = p(x)p(y)

for all x, y ∈ G. Thus it follows from (2.6) and (2.9) that

(2.10) g(x, t) = g(0, t)p(x) = λ1m1(t)p(x).

Changing the roles of g and h we have

(2.11) h(x, t) = h(0, t)q(x) = λ2m2(t)q(x),

where 0 6= λ2 ∈ C, and m2, q are exponentials on S and G, respectively.
Putting (2.10) and (2.11) in (2.1) we have

(2.12) |m1(t)p(x)− λm2(t)q(x)| ≤ M, x ∈ G, t ∈ S

for some λ ∈ C and M > 0. Thus it follows from (2.12) that for each y ∈
G, s ∈ S

|m1(t)p(x)[m1(s)p(y)−m2(s)q(y)]|
≤ |m1(t + s)p(x + y)− λm2(t + s)q(x + y)|

+ |m2(s)q(y)[m1(t)p(x)− λm2(t)q(x)]|
≤ M(1 + |m2(s)q(y)|)

for all x ∈ G, t ∈ S. Since m1(t)p(x) is unbounded we have m1(s)p(y) =
m2(s)q(y) for all y ∈ G, s ∈ S. Finally, putting (2.10) and (2.11) in (1.2) we
have the inequality

|f(x, t)− λ1λ2m(t)p(x)| ≤ ε

for all (x, t) ∈ G× S. This completes the proof.

3. Applications

As an application we consider a distributional version of the following Hyers–
Ulam stability problem of the Pexiderized exponential equation

(3.1) u ◦A− v ⊗ w ∈ L∞(R2n)

for u, v, w in the space S ′(Rn) of Schwartz tempered distributions, the space
F ′(Rn) of Fourier hyperfunctions and the space S ′1/2

1/2(R
n) of Gelfand gener-

alized functions, where A(x, y) = x + y, x, y ∈ Rn and ⊗ denotes the tensor
product of generalized functions and L∞(Rn) denotes the space of bounded
measurable functions on Rn.

For the space of Schwartz tempered distributions we refer the reader to
[4, 8, 9, 13]. Here we briefly introduce the spaces of Gelfand generalized
functions and Fourier hyperfunctions. Here we use the following notations:
|x| =

√
x2

1 + · · ·+ x2
n, |α| = α1 + · · · + αn, α! = α1! · · ·αn!, xα = xα1

1 · · ·xαn
n

and ∂α = ∂α1
1 · · · ∂αn

n for x = (x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ Nn
0 , where

N0 is the set of non-negative integers and ∂j = ∂
∂xj

.
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Definition 3.1 ([8]). For given r, s ≥ 0 we denote by Ss
r or Ss

r (Rn) the space
of all infinitely differentiable functions ϕ(x) on Rn such that there exist positive
constants h and k satisfying

(3.2) ‖ϕ‖h,k := sup
x∈Rn, α,β∈Nn

0

|xα∂βϕ(x)|
h|α|k|β|α!rβ!s

< ∞.

The topology on the space Ss
r is defined by the seminorms ‖ · ‖h,k given by

(3.2) and the elements of the dual space S ′sr of Ss
r are called Gelfand–Shilov

generalized functions. In particular, we denote S ′11 by F ′ and call its elements
Fourier hyperfunctions.

It is known that if r > 0 and 0 ≤ s < 1, the space Ss
r (Rn) consists of all

infinitely differentiable functions ϕ(x) on Rn that can be extended to an entire
function on Cn satisfying

(3.3) |ϕ(x + iy)| ≤ C exp(−a|x|1/r + b|y|1/(1−s))

for some a, b > 0. It is well known that the following topological inclusions
hold:

S1/2
1/2 ↪→ F ↪→ S, S ′ ↪→ F ′ ↪→ S ′1/2

1/2.

We denote by Et(x) the n-dimensional heat kernel

(3.4) Et(x) = (4πt)−n/2 exp(−|x|2/4t), t > 0.

Let u ∈ S ′1/2
1/2. Then its Gauss transform f(x, t) := (u∗Et)(x) = 〈uy, Et(x−

y)〉 is a C∞-solution of the heat equation

(∆− ∂/∂t)f(x, t) = 0

in {(x, t) : x ∈ Rn, t > 0}. Also (u ∗ Et)(x) → u as t → 0+ in the sense of
generalized functions.

Lemma 3.2 ([14]). Let f(x, t) be a solution of the heat equation satisfying

|f(x, t)| ≤ M, x ∈ Rn, t ∈ (0, 1).

Then f can be written as

f(x, t) = (f0 ∗ Et)(x) =
∫

f0(y)Et(x− y)dy

for some bounded measurable function f0 defined in Rn.

Theorem 3.3. Let u, v, w ∈ S ′1/2
1/2 satisfy (3.1). Then u,w,w are bounded

measurable functions, or else

v = λ1e
c·x, w = λ2e

c·x, u = λ1λ2e
c·x + r(x),

where λ1, λ2 ∈ C and c ∈ Cn and r is a bounded measurable function with
‖r‖L∞ ≤ ε.
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Proof. Convolving with Es(x)Et(y) in (3.1), in view of the semigroup property
(Es ∗ Et)(x) = Es+t(x) of the heat kernel, we have for some M > 0,

(3.5) |f(x + y, t + s)− g(x, t)h(y, s)| ≤ ε

for all x, y ∈ Rn, s, t > 0, where f(x, t), g(x, t) and h(x, t) are the Gauss trans-
forms of u, v and w, respectively. Now if f(x, t), g(x, t) and h(x, t) satisfy
(1.9) in the Corollary 1.3, letting t → 0+ we obtain u, v and w are bounded
measurable functions by Lemma 3.2. If f(x, t), g(x, t) and h(x, t) satisfy (1.10),
letting t → 0+, it is easy to see that v = λ1e

c·x, w = λ2e
c·x. Finally, since

(3.6) R(x, t) := f(x, t)− λ1λ2e
λt+c·x

is a solution of the heat equation, applying Lemma 3.2 and letting t → 0+ in
(3.6), we have u = λ1λ2e

c·x + r. This completes the proof. ¤

Note that ec·x ∈ F ′ only when c = ia for some a ∈ Rn. Thus we have the
following.

Corollary 3.4. Let u, v, w ∈ S ′ or F ′ satisfy (3.1). Then u, v and w are all
bounded measurable functions.
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