• 제목/요약/키워드: stability theorem

검색결과 321건 처리시간 0.032초

CONSTRUCTIVE AND DISCRETE VERSIONS OF THE LYAPUNOV′S STABILITY THEOREM AND THE LASALLE′S INVARIANCE THEOREM

  • Lee, Jae-Wook
    • 대한수학회논문집
    • /
    • 제17권1호
    • /
    • pp.155-163
    • /
    • 2002
  • The purpose of this paper is to establish discrete versions of the well-known Lyapunov's stability theorem and LaSalle's invariance theorem for a non-autonomous discrete dynamical system. Our proofs for these theorems are constructive in the sense that they are made by explicitly building a Lyapunov function for the system. A comparison between non-autonomous discrete dynamical systems and continuous dynamical systems is conducted.

Lp SOLUTIONS FOR GENERAL TIME INTERVAL MULTIDIMENSIONAL BSDES WITH WEAK MONOTONICITY AND GENERAL GROWTH GENERATORS

  • Dong, Yongpeng;Fan, Shengjun
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.985-999
    • /
    • 2018
  • This paper is devoted to the existence and uniqueness of $L^p$ (p > 1) solutions for general time interval multidimensional backward stochastic differential equations (BSDEs for short), where the generator g satisfies a ($p{\wedge}2$)-order weak monotonicity condition in y and a Lipschitz continuity condition in z, both non-uniformly in t. The corresponding stability theorem and comparison theorem are also proved.

A General Uniqueness Theorem concerning the Stability of AQCQ Type Functional Equations

  • Lee, Yang-Hi;Jung, Soon-Mo
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.291-305
    • /
    • 2018
  • In this paper, we prove a general uniqueness theorem which is useful for proving the uniqueness of the relevant additive mapping, quadratic mapping, cubic mapping, quartic mapping, or the additive-quadratic-cubic-quartic mapping when we investigate the (generalized) Hyers-Ulam stability.

EXISTENCE AND STABILITY RESULTS OF GENERALIZED FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Kausika, C.;Balachandran, K.;Annapoorani, N.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권4호
    • /
    • pp.793-809
    • /
    • 2021
  • This paper gives sufficient conditions to ensure the existence and stability of solutions for generalized nonlinear fractional integrodifferential equations of order α (1 < α < 2). The main theorem asserts the stability results in a weighted Banach space, employing the Krasnoselskii's fixed point technique and the existence of at least one mild solution satisfying the asymptotic stability condition. Two examples are provided to illustrate the theory.

ASYMPTOTIC STABILITY OF NON-AUTONOMOUS UPPER TRIANGULAR SYSTEMS AND A GENERALIZATION OF LEVINSON'S THEOREM

  • Lee, Min-Gi
    • 충청수학회지
    • /
    • 제33권2호
    • /
    • pp.237-253
    • /
    • 2020
  • This article studies asymptotic stability of non-auto nomous linear systems with time-dependent coefficient matrices {A(t)}t∈ℝ. The classical theorem of Levinson has been widely used to science and engineering non-autonomous systems, but systems with defective eigenvalues could not be covered because such a family does not allow continuous diagonalization. We study systems where the family allows to have upper triangulation and to have defective eigenvalues. In addition to the wider applicability, working with upper triangular matrices in place of Jordan form matrices offers more flexibility. We interpret our and earlier works including Levinson's theorem from the perspective of invariant manifold theory.

ON EXISTENCE THEOREMS FOR NONLINEAR INTEGRAL EQUATIONS IN BANACH ALGEBRAS VIA FIXED POINT TECHNIQUES

  • Dhage, B.C.
    • East Asian mathematical journal
    • /
    • 제17권1호
    • /
    • pp.33-45
    • /
    • 2001
  • In this paper an improved version of a fixed point theorem of the present author [3] in Banach algebras is obtained under the weaker conditions with a different method and using measure of non-compactness. The newly developed fixed point theorem is further-applied to certain nonlinear integral equations of mixed type for proving the existence theorems and stability of the solution in Banach algebras.

  • PDF

FIXED POINT THEOREM ON SOME ORDERED METRIC SPACES AND ITS APPLICATION

  • CHANG HYEOB SHIN
    • Journal of applied mathematics & informatics
    • /
    • 제42권1호
    • /
    • pp.93-104
    • /
    • 2024
  • In this paper, we will prove a fixed point theorem for self-mappings on a generalized quasi-ordered metric space which is a generalization of the concept of a generalized metric space with a partial order and we investigate a genralized quasi-ordered metric space related with fuzzy normed spaces. Further, we prove the stability of some functional equations in fuzzy normed spaces as an application of our fixed point theorem.

GLOBAL EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS OF HIGH-ORDER HOPFIELD NEURAL NETWORKS WITH DISTRIBUTED DELAYS OF NEUTRAL TYPE

  • Zhao, Lili;Li, Yongkun
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.577-594
    • /
    • 2013
  • In this paper, we study the global stability and the existence of almost periodic solution of high-order Hopfield neural networks with distributed delays of neutral type. Some sufficient conditions are obtained for the existence, uniqueness and global exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. An example is given to show the effectiveness of the proposed method and results.

EXISTENCE AND STABILITY OF ALMOST PERIODIC SOLUTIONS FOR A CLASS OF GENERALIZED HOPFIELD NEURAL NETWORKS WITH TIME-VARYING NEUTRAL DELAYS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.1051-1065
    • /
    • 2012
  • In this paper, the global stability and almost periodicity are investigated for generalized Hopfield neural networks with time-varying neutral delays. Some sufficient conditions are obtained for the existence and globally exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. The results of this paper are new and complement previously known results. Finally, an example is given to demonstrate the effectiveness of our results.