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CONSTRUCTIVE AND DISCRETE VERSIONS
OF THE LYAPUNOV’S STABILITY THEOREM
AND THE LASALLE’S INVARIANCE THEOREM

JAEWOOK LEE

ABSTRACT. The purpose of this paper is to establish discrete ver-
sions of the well-known Lyapunov’s stability theorem and LaSalle’s
invariance theorem for a non-autonomous discrete dynamical sys-
tem. Our proofs for these theorems are constructive in the sense
that they are made by explicitly building a Lyapunov function for
the system. A comparison between non-autonomous discrete dy-
namical systems and continuous dynamical systems is conducted.

1. Introduction

Since the Lyapunov’s stability theory and the LaSalle’s invariance
theorem have been developed, many authors have applied these powerful
tools in the study of stability for non-autonomous continuous dynamical
systems arising in many disciplines such as engineering and the applied
sciences ([2], [6], [7], [8]). Recently, the steady improvements in the
performance of digital computers has inspired the need for the stabil-
ity analysis of discrete systems and a significant effort has been spent in
studying theoretical aspects of discrete dynamical systems which include
various numerical methods to simulate continuous systems by discretiza-
tion. However, so far there seems to be no discrete versions of these two
theorems, and the main aim of this paper is to extend it from non-
autonomous continuous dynamical systems to non-autonomous discrete
dynamical systems.
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We first give a necessary and sufficient condition for an existence of an
exponentially stable fixed point of non-autonomous discrete dynamical
systems. We present a “constructive” proof for this theorem in the sense
that it is made by explicitly constructing a Lyapunov function for the
system. Also we establish a discrete version of the well-known LaSalle’s
invariance theorem for locating limit sets of non-autonomous dynamical
systems and conduct a comparison between non-autonomous discrete
dynamical systems and continuous dynamical systems.

2. Preliminaries

In this section, we introduce some fundamental concepts in the theory
of non-autonomous discrete dynamical systems which is needed in the
subsequent developments ([1], [3]).

Consider a non-autonomous discrete dynamical system of the form

(2.1) Tee1 = fe(Tr),

where k € Z,z; € R", and the function fj : R® — R" is assumed to be
C' and invertible for each k € Z. We call the system (2.1) autonomous
if fx(-) = f(-) for all k for some f : R* — R™. Here the condition
that f is invertible is a sufficient condition for the existence of solution
which can be defined on Z. Most important of all, widely used major
types of practical numerical methods for solving initial value problems
of ODEs such as Runge-Kutta methods, Richardson extrapolation, and
its particular implementation as the Bulirsch-Stoer method, predictor-
corrector methods all satisfy this condition.

ExAMPLE 1. The fourth-order Runge-Kutta formula for ODE

i—f =g(z)
has the form of
T+l = &n + k1/6 + ko /3 + k3/3 + k4 /6,
where
k1= hg'(yn,:vn),
ko = hg'(yn + h/2,zn + k1/2),
k3 = hq' (yn + h/2, 20 + k2/2),
ks = hg' (yn + h, z, + k3),
Yn+l = Yn + h.
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Usually, ¢’ is bounded and & is sufficiently small. Let f,(z5) = Zpe1 =
ZTn +k1/6 + kof3 + k3/3 + k4/6. Then f, is invertible for appropriate
condition for ¢, h since D f,(z) = I + hDg),(x).

The solution of (2.1) starting from z € R™ at k = kg is called a
trajectory, denoted by &(-, ko, z) : Z — R™ (or zx = ¢(k, ko, z)). In fact,
¢(k, ko, ) = fr—1(fe—2(- - (fro(®)) -+ +))-

A state vector x* is called a fized point of system (2.1) if z* = fx(z*)
(or ¢(k, ko, z) = z) for all k, kg € Z. A fixed point z* is called uniformly
stable, if for each € > 0, there is § = d(¢) > 0, independent of kg, such
that

| z—z* ||< 8 =| ¢k, ko,z) — 2" |<e Vk>ko>0

and is called asymptotically stable, if it is uniformly stable and é can be
chosen, independent of kg, such that

| x—2x"||< = lim ¢k, ko,z) = x*
k—oo

and is called exzponentially stable, if there exists a positive constant r, M
and 0 < s < 1 such that

| p(k, ko, ) —z* | M ||z —2* || s* % V| z|<r VE>k >0.

A fixed point z* is called unstable, if not stable.

A useful tool for the analysis of nonlinear systems is the Lyapunov
function theory. If there exists a smooth function (or C") V : ZXR"® — R
for (2.1) such that

V(k+1,6(k+ 1,k z)) <V(k,z)

for all x which is not a fixed point. Any smooth function (or C") satisfy-
ing above inequality will be called a Lyapunov function for the nonlinear
discrete dynamical system (2.1).

3. Necessary and sufficient conditions for the exponentially
stable fixed point of discrete dynamical systems

In this section, we give a necessary and sufficient condition for an
exponentially stable fixed point of non-autonomous discrete dynamical
systems, which is a discrete version of Lyapunov’s second stability the-
ory.
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THEOREM 3.1 (Sufficent Condition). Let x = 0 be a fixed point for
(21) and D = {x € R* : | z ||< r}. Let V(k,) : D — R be a
continuously differentiable functions for each k € Z such that

allzP<Vkz)<elz|?
and
Vk+1,¢6(k+1,kz) - V(kz) < —c3 || z |
for all k € Z and all x € D. Then z = 0 is exponentially stable.

PROOF. Let p <, and Q, ={zx € D: V(k,z) < c1p’}.
(I) First, we will prove that {z : || z [|2< ¢1/c2p?} C Q. Suppose that

|z 1< e1/e2p? or e ||z |?°< c1p?.
Then
V(k,.’l)) < Clpz-

Thus, the set  , contains the ball {z : || z ||?< ¢1/c2p?}.
(IT) Next, we will prove that Qr , C {z : || z ||< p}. Suppose that

V(k,z) < c1p?,
then
allz|’<ep® or |z|<p
Hence, Q4 , is a subset of the ball {z : || z ||< p} since
Vk2) < e1p? = e || 2 J2< erp? =] o |< p.
Therefore, by (I) and (II), we should have
{z: )z P erfeap®} CpC{e: |l 2ll<p}c D VkeZ*.

(II1) Finally, we will prove that = 0 is exponentially stable. To prove
this, we first note that for any x, € Q, ,, the solution starting at z,
stays in Q, , for all k > kg since V{(k+1,¢(k+1,k,z)) < V(k,z). Hence,
the solution starting from zy, is defined for all £ > ko and z, € D.

For the rest of the proof we will assume that || z ||2< ¢1/cop?. Then

V(k+1,6(k + 1,k 2)) = V(kz) < —c3 || 2 |’ —e3/c2V (K, ),
which implies

Vk+1,¢(k+1,k,z)) < (1 —c3/c2)V(k,z).
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Here, we may assume ¢y > c3, i.e., 0 < s =1—c3/cy < 1 without loss of
generality. Then
V(n,d(n, k,x)) < s"*V(k,z)
and any solution starting in €, ,, thus, satisfies the inequality
I é(n, k,2) [ < e7'V(n, ¢(n,k,2)) < '™V (k, )
< ci‘ls"_k02 |z |?.

Therefore, z = 0 is exponentially stable. a

THEOREM 3.2 (Necessary condition). Let z = 0 be an exponentially
stable fixed point for (2.1), i.e., there exists a positive constant rg, M
and 0 < s < 1 such that

| (K, ko, z) | M |z | s* % V| z|<ro, Vk>ko>0.

Let D ={z € R": || z ||< r} wherer = 7M. Let gx(z) = fr(z) — =
and the Jacobian matrix [Ogy/0x| is bounded and || Ogx/0z ||[< a < 1
on D, uniformly in k. Let Dy = {z € R" : || = ||< 7o}. Then, there exists
a continuously differentiable functions V(k,-) : D — R for each k € Z
such that

allz|P<Vikz)<c|z|?
and
Vk+ 1,6k + 1,k z)) —V(k,z) < —c3 || 2 ||2

for all k € Z and all x € D, where cy,cq,c3 are positive constants.
Moreover, if r = oo and the origin is globally exponentially stable, then
V(k,z) is defined and satisfies the above inequalities on R™. Further-
more, if the system is autonomous, V can be chosen independent of
k.

Proor. (I) First, we will prove that
allz|P<Vikz) <e |z

Let z, = ¢(n,k,z) denote the solution of the system that starts at
zy = ¢(k,k,xz) = z. For all x4 € Dg,z, € D for all n > k. Let

k+N k+N

Vik,z)= > | o(nk,2) 2= [l za |I%,
n=k n=k
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where N is a positive constant to be chosen later. Then we have

k+N k+N
2) =Y o P< Y M2H) |z P= o | ax |1,
n=k n=k

where ¢; = M?(1 — s20VH1) /(1 — §2).
On the other hand, since || g,(z) ||<|| 8g9.(2)/0z ||| ||,

@) | = llz—gn() | Z 2l =l gal2) |
> |z = 8gn(2)/82 || = ||
> (I-a)fz|

where z is a point on the line segment connecting x to the origin. Hence

I ¢(n, k@) 1=l famr(faa(-- (fr(@) D 12 QL —a)* " |z |

and
k+N k+N

2)=3 lzal?> Y M1 - )28 || oy |P= ¢y || 2 |1%,
n=k n=k

where ¢; = M2(1 — (1 — a)2V+t1)) /(1 — (1 — a)?). This proves the first
inequality of the theorem.
(IT) Next we will prove

V(k + 17¢(k + 1’k7 ZL")) - V(k‘,fU) < -—c3 “ Tk ”2 .
Since ¢(n,k+ 1,¢(k + 1,k,x)) = ¢(n, k,z), we have

Vik+1,¢(k+1,k,z)) — V(k,z)
k+1+N E+N

= 3 ol k+1,6(k+1k2) |- Z | ¢(n, k, z) ||?
n=k+1
k+1+N k+N

= > |l ¢n k=) |- Z | d(n, k,z) ||
n=k+1
k+1+N k+N

= Y Mzl =) Ml an IP=l zrsren 12 = | 22 |2
n=k+1 n=k

= M2S2NHD |l g |12 — | a2 P= —(1 — M2SPNFDY |y |12

Choosing N > In(2M)/1n(1/s),
V(k+1,¢(k+1,kz)—Vikaz)<—(3/4) ||z |,

This proves the first inequality of the theorem.
(III) If all the assumptions hold globally, then clearly 7y can be chosen
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arbitrarily large. Therefore, V(k,z) is defined and satisfies the above
inequalities on R".

(IV) If the system is autonomous, then ¢(n, k, z) depends only on (n—k);
that is, ¢(n, k,z) = f**(x). Then

k+N N
Vik,z) =Y Il @) P=>_ |l (=) I?
n=k n=0
which is independent of k. |

REMARK 3.3. Faced with searching for a Lyapunov function, two
questions come to mind.

(i) Is there a function that satisfies the condition of Lyapunov func-
tion?

(il) How can we search for such a function?
In the case of continuous dynamical systems, Lyapunov function theory
([5]) provides an affirmative answer to the first question. The answer
takes the form of a converse Lyapunov theorem which is the inverse of
one of the theorem. However, there are no general method for finding
a Lyapunov function for continuous dynamical systems, which gives a
negative answer to the second question (note that in general, the con-
struction of a Lyapunov function in a continuous dynamical system as-
sumes the knowledge of the explicit solutions of a family of differential
equations. ([4], [5])). On the contrary, in the case of discrete dynam-
ical systems, the above theorems provide affirmative answers to both
these questions. Interesting enough, the above theorems is proved by
explicitly constructing a Lyapunov function.

4. An invariance theorem for non-autonomous discrete dy-
namical systems

In this section, we establish a discrete version of the well-known
LaSalle’s invariance theorem. Unlike the case of continuous dynami-
cal systems, the discrete version of this theorem will be proved without
using Barbalat’s lemma ([5]).

THEOREM 4.1 (Invariance Theorem). Let D = {z € R™: || z ||< 7}.
Let V(k,-) : D — R be a continuously differentiable functions for each
k € Z such that

allz|P<Vke)<el |
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and
Vk+ 1,0k +1,k,z)—V(k,x) <-W(z) <0

for all k € Z and all x € D, where W(x) is continuous on D.
Then all solutions of (2.1) with || x4, < c1/cop® are bounded and
satisfy

W(d(k,ko,xz)) = 0 as k — oo.

Moreover, if all the assumptions hold globally, the statement is true for
all zy, € R™.

PROOF. Let p < r, and @, = {z € D : V(k,z) < ¢c1p?}. Since

I 2ty 1< c1/e2p® or ez || @y |P< c10?,
we have
V(k,zx) < V(ko,zk,) < €10
which implies that
zr = ¢k, ko, xz) € Q. , Yk > ko.

Therefore, the set €, , contains the ball {z : ||z||? < ca/c1p?} and ||zx | <
p for all k > ko. Since V' (k,xy) is decreasing and bounded from below
by zero, it converges as k — oo. Now,

k
0< ) Wza) < —Z‘ (n+1,z,) — V(n,z,))

n=ko n=ko

= V(ko,zk,) = V(k+1,2541).

Therefore Y 72, W (z,) exists and is finite. Hence W(¢(k, ko, )) — 0
as k — oo. g

REMARK 4.2. The limit W(z;) — 0 as k¥ — oo implies that x; ap-
proaches

E={zeD:W(z)=0}

as k — oo.
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