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GLOBAL EXPONENTIAL STABILITY OF ALMOST PERIODIC
SOLUTIONS OF HIGH-ORDER HOPFIELD NEURAL
NETWORKS WITH DISTRIBUTED DELAYS OF NEUTRAL
TYPE'
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ABSTRACT. In this paper, we study the global stability and the existence
of almost periodic solution of high-order Hopfield neural networks with dis-
tributed delays of neutral type. Some sufficient conditions are obtained for
the existence, uniqueness and global exponential stability of almost peri-
odic solution by employing fixed point theorem and differential inequality
techniques. An example is given to show the effectiveness of the proposed
method and results.
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1. Introduction

Since high-order Hopfield neural networks (HHNNSs) have stronger approxi-
mation property, faster convergence rate, greater storage capacity, and higher
fault tolerance than lower-order Hopfield neural networks, the study of high-
order Hopfield neural networks has recently gained a lot of attention, moreover
there have been extensive results on the problem of the existence and stability of
equilibrium points, periodic solutions and almost periodic solutions of high-order
Hopfield neural networks in the literature. We refer the reder to [1-12] and the
references cited therein. Moreover, time delays may occur in neural procession
and signal transmission, which can cause instability and oscillations in system
and the distributed delays should be incorporated in the model. In other words,
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it is the often the case that the neural networks model possesses both bounded
and unbounded delays (distributed delays).

In addition, because of the complicated dynamic properties of the neural cells
in the real world, the existing neural network models in many cases cannot char-
acterize the properties of a neural reaction process precisely. Thus, it is natural
and important that systems will contain some information about the derivative
of the past state to further describe and model the dynamics for such complex
neural reactions. Therefore, neural networks with delays of neutral type are
considered to be more accordant with reality. Recently, there are many results
on the stability and the existence of periodic solutions to neural networks with
delays of neutral type (see [13-19]). However, few papers have been published on
the stability and the existence of almost periodic solution to neutral high-order
Hopfield neural networks. In this paper, we consider the following high-order
Hopfield neural networks with distributed delays of neutral type

’

1) = —eias(t) + > a0 / i (0) (a5t — 6))do
j=1 0
+;azj<t> / B (O)h; (i (t — 0))do

F D) [k Oyt - 00 [ k(e - 0)as

j=11=1
+1(t),i=1,2,...,n, t >0, (1)

where n corresponds to the number of units in a neural network, x;(t) corre-
sponds to the state vector of the ith unit at the time ¢, ¢;(¢) represents the rate
with which the ith unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs, a,;(t) and b;;(t) are
the first- and second-order connection weights of the neural network, d;;, ki;
are the kernels, I;(¢) denotes the external input at time ¢, f; and g; are the
activation functions of signal transmission.
The initial conditions of (1) are of the form

xi(s) = ¢i(5)7 s € (—O0,0], 1= 172a sy T

where ¢;(+) denotes a differential real-value bounded function defined on (—o0, 0]
and satisfies that ¢}(-) is bounded on (—o0,0) too.
Throughout this paper we assume that:
(Hy) ci(t) > 0,a45(t), 04;(t), biji(t) and I;(t) are almost periodic functions,
i g l=1,2,... n.
(Hs) There exist positive constants ¢; > 0,9; > 0,¢; > 0,G; > 0 such that
[fi(x) = fily)] < eilz —yl, [gi(x) = gi(y)| < eilz —yl, [hi(z) = hi(y)| <
Vile —yl, |gi(z)] < Gy, for all z,y € R, and fi(0) = g;(0) = hy(0) =
0, i=1,2,....n.
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(Hs) For i,j € {1,2,...,n}, the delay kernels d;j, ki;, Bi; : [0,00) — R are
continuous and integrable with

o0 o0 o0
og/ iy (s)ds < kM, og/ iy ()| ds < Y, og/ 1B15(s)]ds < BY.
0 0 0

Our main purpose of this paper is to study the existence, uniqueness and
global exponential stability of almost periodic solution to (1) by employing fixed
point theorem and differential inequality techniques. To the best of our knowl-
edge, this is the first paper to investigate the global exponential stability and
existence of almost periodic solution to system (1).

2. Existence of almost periodic solution

To obtain the existence of almost periodic solution of system (1), we shall
recall the following definitions and lemmas:
Definition 2.1 (20, 21]). Let u : R — R™ be continuous in ¢, u(¢) is said to be
almost periodic on R if, for any € > 0, the set T'(u,e) = {d : |u(t + ) — u(t)| <
g, Vt € R} is relatively dense, i.e, for Ve > 0, it is possible to find a real number
I =1(e) >0, for any interval with length (), there exists a number § = 6(¢) in
this interval such that |u(t + §) — u(t)| < e, for V¢t € R.

For z = (21, 22,...,2,)T € R", we define |z|| = max |z].
1<i<n

Definition 2.2. Let x € R™ and Q(t) be a n X n continuous matrix defined on
R. The linear system

() = Qt)x(t) 2)
is said to admit an exponential dichotomy on R™ if there exist positive constants
k,a, projection P and the fundamental solution matrix X (¢) of (2) satisfy

IX@PX " (s)| < ke 7 (vt > 5), [ X(O)(I = P)X ()] < ke 7 (Vs > 1),

Lemma 2.3 ([20, 21]). If the linear system (2) admits an exponential dichotomy,
then the almost periodic system:

a'(t) = Q(t)x(t) + g(t)

has a unique almost periodic solution x(t), and

t “+o00
z(t) = / X(t)PX(s)g(s)ds — X(t)(I - P)X (s)g(s)ds.
—oo t
Lemma 2.4 ([20, 21]). Let ¢;(t) be an almost periodic function on R™, and
1 t+T
M[Ci]:TETooT/t ci(s)ds >0, i=1,2,...,n.

Then the linear system
2(t) = diag(—c1(£), (1) - ., —ca(D))a(t)

admits an exponential dichotomy on R™.
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For the sake of convenience, we introduce the following notations:

e = inf ¢;(¢), cfw =supc;(t), I =supl|l;(t)], a;; =suplai;(t)|,
teR teR teR teR

@ij = sup lag;(t)|, b = sup by (t)], i,5,0=1,2,...,n
teR teR

7 T
A= max{ max {m}, max {Ii +cfwm}},
1<i<n | ¢ [71<i<n cl
1 n
B = 11;1%)% max e Z @;jd;; |fj |+ozzjﬁ” |h;(0)]

Jj=1
+Zbilelijf‘fk%} }

=1

t t
bo(t) = ( / = e (g, / o= Il eaidup (o

— 00

t ) T
/ e Jo 07L(U)du]n(s)ds> ’

X ={¢l¢ = (¢1(t), d2(t), ..., ou(t)"},

where ¢; : R — R is a continuously differential almost periodic function.
Then, X is a Banach space with the norm defined by

¢l = sup [|¢(£) |1 = max{[[¢]lo, [|¢[lo},
teR

where

o)l = max{[[g(t)llo, 1¢"(®)llo}, ll¢t)llo = max |gs(t)], [[pllo = sup [|6(2) -

1<i<n

Theorem 2.5. Suppose that (Hy) — (Hs) and
(Hy) Fori=1,2,...,n,c" >0 and
M

1 ¢ [ __
¢ = s {mox{ o1 G} O [t o,
- - K3

4 j=1

T2, Z%leg\fkgy” <1
1=1
hold, then there exists a unique continuously differentiable almost periodic solu-
tion of system (1) in the region Xo = {d|d € X, || — do||lx < A5+B}

Proof. For V¢ € X, we consider the almost periodic solution z?(t) of the linear non-
homogeneous almost periodic differential equations

1(t) = —e)a(0) + D aut) [ dul0)fs(65(e—0))ap
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n oo ,

£3au®) [ 8O0t - 0)a0
j=1 0

£ i) / " iy (0)g (65 (¢ — 0))do / " k)it — 0))do

Jj=11=1
+IL(t),i=1,2,...,n. (3)

Noticing that ¢;(¢), aq;(t), biji(t), di;(t), ki;(t) and I;(t) are almost periodic functions,
and M|c;] > 0, it follows from Lemma ?? and Lemma ?? that system (3) has a unique
almost periodic solution which can be expressed as follows:

a?(t) = (aP(t), 25 (1), ..., zp ()"

- (/ "ttt [Zm | i 0)55(6565 — oao

+Zalj(8)/oooﬂu( IHCACEY’ d9+Zwa

j=11=1

< [ s O)as 0505 = 008 [ k@) n(s — 0))d0 + h(sﬂ s,
[ et [Z i) [ 0150650 - 0)as
+Zam / Bnj (0 qSJ s—0 d@—l—Zangl / Fnj (6

Jj=11=1
T

xa5(05(5 a8 [~ Bua@)a(on(s — 0)a0 + 1(5)]as) ()
0
Now, we define a mapping T : X — X as follows:

(To)(t) =2°(1), Vo € X,
where z? is defined by (4). By the definition of the norm of Banach space X, we have

llgollsx = max{||pollo, [[¢ollo}
t
/ Ii(s)e” J§ citwdu g ,

t o
Li(t) — / Li(s)ci(t)e™ Jiei(wydu g

= Imax { Sup max
teR 1<i<n

}

sup e |10 = |
< max{lrgag(n{c—} max {I + e }} =
Hence, for V¢ € Xo = {¢|¢> eX,||l¢ — pollx < M}, we obtain
+ B A+ B
e < 16 = doll+ ool < S +4= 552, (5)

Next, we show that T" maps the set Xo into itself. In fact, for any ¢ € Xy, we obtain
by (HQ) — (Hg) that

IT¢ — ¢ollo
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t n o
_ = [ ei(w)du - - (bi(s —
= s max {| [ e Santo) [ @160 - onas
+Za” / By Oy (655 — )0 + 33 b ()
j=11=1

x / s (01055 0)ab [ b O)au(61(s — 0))a0) as| |
ap{ [P [ (o

x / e 0)1[15 (65 (s — 0)) — £50)] + \fj(O)l]d9>

IN

+Z|au ) / 1855 (8) | [hs (6 (s — 8)) — iy (O)] + [y (0) ] dO

E3 bns) [ / iy (0)] 195 (5 (s — 6)) — g,(0)]d8

Jj=11=1

x / kit (0)] 1 (0 (s — emde}
S (s / Fi5 ()15 (0)]do / Ik (6) 191 (61 (s — 0)) — u(0)|dB

j=11=1

SO () [ ks @)l )10 [ ka(6)]]gi (0 |de} }

JZ”Z; Ji\S / J j /

igg&%{/, frfc<u>du{za/ i3 (0)| (65165 (s — 0)] + 1 £,(0)])dB
+Za”/0 1813 (0)] (9,16, (5 — 0)] + |h;(0)])do

S bk [ ks @lies(s— 03100

IN

Jj=11=1
+ZmeG ek / kit (0)| | (s — 0 |d9+ZmeG lef‘ko] }
j=11=1 j=11=1
t n
—cit(t—s) — M _ 5 Mﬁ

+2 3 BiGies k) ol

=1

3 (T 1501+ @m0 1) + > bk k) |as
= =1
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1 n - L n o
< max {CT" [Z (aijd.fv\;lej' + aijﬂf\;f’ﬂj + 2 Zbiszlejk‘,%kﬁJ) [|b]lx

1<i<n f .
== i Lj=1 =1

+Z(a” a1 50| + i B [y )|+ZMGJ~GN<:£J%%)}}. (©)

=1

Furthermore, we have

176 =60 llo
— sup max { Zaw ) [ as @, - 0)a0

+Zam /Bw (65t — 0))dB
LS bt / i3 (8)g; (5 (¢ — 0))d6 / Fa(@)gu(u(t — 0))d6

Jj=11=1

[ e st [Zams) | as @00 - opas
+ZO‘1J / Bi; (0 ¢J s—0))df
T Z Z b (s / 5 (0)g5(65(s — 0))do / " ha(0)an(b(s e>>d9} ds

< sup max {Z <W‘jdzj‘;‘1€j +067ij5i];'179j + 2¢; Zfﬂalki\;{kzﬂ{]> ll#llx
j=1 1=1

}

teR 1<i<n

JFZ <a” ij |fJ )|+ O‘U/Bw |h; (0)] + G Z?ﬂlef\J/'jk%)
=1
t n n
+/ e =) {Z (Wdi]?e]’ + a0+ 25y bilelkf\f’C%> ll#llx

j=1 1=1

+ <aijdf‘f|fj(0)\+%ﬂg|h( )N +Gj Zb’”leM )}ds}
7 =1

N o
< max { (1 - cm) {2:1 (“ijd%@ +ai; B 0 + 25 lzjl bilezkffk%) [Edlbs
4 j= _
Z( ad | (O] + &Y s (0)] + Gy 3 bk k2 )}} @)
=1 =1

Thus, it follows from (5)-(7) that

7 l

1 c; . .
IT¢ — ¢ollx = max{j 1+ - } {Z (aijdf\ffj + @ B 0,
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n
426, S BGl/ kY ol | + 8
=1
A§ + B
£ )
which implies that T¢ € Xo. So, the mapping T is a self-mapping from X, to Xo.
Finally, we prove that T is a contraction mapping of the Xg. In fact, in view of (Hz),
for any ¢, ¥ € Xo, we obtain

< Ellollx + B <

IT6 — Tilo

= iggfgﬁxﬂ{ /_ _f C‘(u)du{zau / )[f](¢](5_9))
— f5(5 (s d0+2aw / B3 (0) [h (6 (5 — 0)) — hy (0 (5 — 0))] do
+303 buils) [ hu)[as (6,0~ 0)

g5 (w5 (s — 6))]do / " ka(@)au(d(s — 0))do
£33 bals ) [ k@05 = 0))a0

j=11l=1

< [ ka5 - 0)) = (s - 9>>]de] ds

}

t n
sup max {/ e i c"(“)d“[ E az‘jdzl‘\g/‘lfj||¢—1/1“0
—o0 j=1

IA

teR 1<i<n

+§I

%WM¢wMHZZ@%M%MwMM

j=11=1

gﬂgﬁ{égigkuﬁﬂjH%ﬁy%+2§;hm%Qﬁﬂ%}hw¢M
< €6 — vl
and
I(Td —T9) lo
=:2ggﬁ§{_ 0 [ s @106, - 0) - 1,050 - o)) as

+Za” /ﬁu hy (6t — 0)) — hy () (¢ — 0))]do

S bt /k (9565t — 0)) — g; (8t — 0))] dB

j=11=1
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/ ku(0)gi(du(t —0 d@—&-ZZb”z / kij(0)g;(v;(t —0))do

j=11=1
t

x / " ka(0) [ (1t — 0)) — gi(whn(t — 6))]do — / ei(t)e™ I e

— 00

[Zau / (6) [ (65 (s — 6)) — £, (5 (s — 0))] 6
+Za” / B3 (60) [13 (6 (s — 0)) — hy (4 (s — 6))]dB

Y ba(s) / (0) 05 (5(s — 0)) — g5 (tb5(s — 6))]do

Jj=11=1

x/o O an(nls — 0)do + 33 bun(s / (6)g; (5 (s — 0))d6

j=11=1

< [ k) anonts = 0)) — s — ) o as

< {55 |35 (e + o
2
+2 3 baGiesk k) | blo - vl < €l - vl
=1
Thus,

1T¢ —Tllx < E&ll¢ —llx.

Notice that & < 1, it means that the mapping 7" is a contraction mapping. By
Banach fixed point theorem, there exists a unique fixed point z € Xy such that
Tz = z, which implies that system (1) has a unique almost periodic solution.
This completes the proof. O

3. Global exponential stability of almost periodic solution
Definition 3.1. The almost periodic solution z*(t) = (3 (¢),z3(t),..., x5 ()T
of system (1) with initial value ¢*(t) = (¢%(t), ¢3(t),...,¢%5(t))T is said to be
globally exponentially stable. If there exist constants A > 0 and M > 1 such
that for every solution z(t) = (21(t), 2(t),...,2,(t))T of system (1) with any
initial value ¢(t) = (¢1(t), p2(t), ..., dn(t))T satisfies

l2(t) = 2*(t)]| = max{||z(t) — &* @®)II, |’ (1) — == (D]} < M][$llze™™, V¢ >0,

where

ol = max { sup max Joi(t) — 670, s mas [61(6) — (67)'(1)]}.

te(— OOO]1<z<n te(— Ooo]1<’L<TL

Theorem 3.2. If conditions (Hy)—(Hy) hold, then system (1) has a unique con-
tinuously differentiable almost periodic solution z(t) which is globally exponential
stable.
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Proof. Tt follows from Theorem 2.5 that sybtem (1) has a unique almost peri-
odic solution z*(t) = (2}(t),x5(t),...,2%(t))T € X, with initial value ¢*(¢) =
1(t

(61(8), @5(), -, 65(0)T. Let o(t) = (@1(t), 52(0), ..., n(8))" be an arbitrary so-
lution of system (1) with initial value <;§(t) (¢1(2), ¢2( Yy ooy G ()T, Let yi(t) =

Il(t) - xf(t% wl(t) ¢’( ) ({bz( )7 1= 1727 s T, then
’< )+ ci(s)yi(s)

=Zau / O)F; (43 (s — 0) + (s — 0) — f5(} (s — 0))] dB
+Zan / B3 (0) [ (u (5 — 0) + () (5 — 0)) — hy () (5 — 0))]do
3 buus) [(/m 5(0)[95 (03 (s — 0) + 27 (s — 0)) — gy (a (s — 0))] O

Jj=11=1

X /000 kit(0)gi (yi(s — 0) + i (s — 0))d6’> + (/000 ki;(0)g;(z (s — 0))do

< k) onns ~ 0) i s - 0) ~ (o (s~ 0] av) . ®)
0
where i =1,2,...,n. Let H; and H} be defined by
Hi(n) =" —n— Z {a”e]/ 15(0)]e"’d6 + @iz, / |85 (8)|e"? b
0
+25jZ@le£f/ |k‘ij(0)e’79d9}
1=1 0
HY () = e - e [ a0 as
j:l
+a7j19j/ 18i;(0)|e"°dO + 2¢; Z@le%/ kij(0)|e"0d9],
0 0

=1

where i = 1,2,...,n, n € [0,00). By (Hy), we obtain that for i = 1,2,...,n,

H;(0) = ¢" — E”: [/000 (%€j|dij(9)| + a5, Bi; (0)]

j=1
+2aj§n:biﬂ(;lkj‘f|kij(e)|>d9} >0
=1
and
Hi(0) = ¢ 2”: [awej /°° |di;(6)]dO + o ; /0°° |85 (0)]dO

Jj=1
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+2¢ Z@le%/ |kij(0)|d9:| > 0.
1=1 0
Since H;, H} are continuous on [0, 00) and H;(n), H (n) — —oo as n — oo, there
exist 7,7 > 0 such that H;(n7) = H; (v]) = 0, and Hy(n;) > 0 for n; € (0,77),
(H} (i) > 0 for v; € (0,7;). By choosing v = min{ni,n3, ..., n5, v ¥, 7o}
we have
H;(y) >0, Hf(y)>0, i=12,...,n.

So, we can choose a positive constant 0 < A < min{~, A\g}) such that H;(\) >0
and H(A) > 0, which implies that

R /- o
Y > {/O (aij€j|dia‘(9)| + @ij518:5(0)]
K3 ]:1
+2¢; Zbiﬂelk%kij(an)ewcze] <1, ©)
=1
cm i </ L
(14 2 55) S| [ (st o+ aoiag o)
) j=1
+22; ) " biGik))! |/€Z—j(9)>e}‘9d0} <1, (10)
=1
where i = 1,2,...,n.

Multiplying (8) by efos ci(u)du 454 integrating on [0’ t]’ e have
) = gi(Q)em s

b [t [z o) [ @)1 0n(s - 0) + 55 - )

’

it ON)ab + S as(e) [ B0 - 0)+ (05) (s - )
~taits = olas+ 30 S o) [ ) oy sts )
j=11=1 0

+:v;f (s— 9)) — gj(x;(s — 0))}(10 /000 ki (0)g; (yl(s —0)+ (s — 0))d0>

Jr:z:;f(s — 9)) — gj(z;(s — 9))}d0>} ds, 1=1,2,...,n. (11)
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v = o fer (3| [ (w5t @) + vl

n -1
+2€ijle%|kij<e>|)deD }

=1
By (H4) we have M > 1. Thus,

1 1 s
- o [ (@il o)+ ag0,l6,0)
j=1

?

+2¢5 Y b Giky)! Ikij(0)>ewd0} <0
=1

and

Iyl = @)l < [Yllx < Mllxe™, vt € (—o00,0],
where A > 0 as in (9) and (10). We claim that

ly@)lh < Mlxe™, t > 0.

To prove (13), we first show for any p > 1, the following inequality holds

ly(®)|l1 < pM|[]|xe™, t > 0.

(14)

If (14) is not true, then there must be some ¢; > 0, and some i,¢ € {1,2,...,n}

such that

ly(t) = max{[ly(t)lo, Iy (t1)llo} = max{lys(t1)]; Iy, (E)I} = pM[xe "

and
ly()[lr < pM||yllxe™™, t € (=00, t].
By (9)-(11),(12),(16) and (Hz), we get

lyi(t1)]

ty f t1
<o i ci<u>du‘|¢||x+/ o J: q(u)du[
0 =
> a0, / 1B (0)] (s — 6)[d6
j=1
#2Y° Y G [ kijw)nyj(s—ende}ds
0

j=11=1

IN

t
0

(15)

(16)

S e / iy (0)] [y (s — 6)]/d6

i oo ¢i(u)du - —_— —As >
ol [ e e S ageptulle [ a0
j=1
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+ Do atpMulee™ [ 18(0)|cdo
=1 0

+23° S D Gre sk pMI| e / |k,-j<e)|ewde]ds

j=11=1

IN

ol + oMl Y- [ (s kds 001+ 1000 ) s
j=1"0

n n 0 tl

j=11=1 0

— efczn'tl H”L[)HX +pM||1/}HX Z |:/0 <%ej|d”(9)| + aZJﬁJV}z](G)) 6)\9d0
j=1

no 0 . .
+2€j sz]llel]\l/[/O |k” (9)|6)\9d9:| Cfn — )\(1 — e()‘*ci )tl)
=1 i

1 m 1 m
M —/\tl (}\—Cl )tl 1 _ ()\—Cl )tl
e { e g L - )

K2

x [Z/ <aijej|dij(9) + @i50515:5(0)]
=170

122, 3 b Gkl |kij<e>|) ewde} }

=1

1 m
< pMH?/’HXe_/\tl {Me(’\_ci g
x [Z / (wﬂdij(o) w018 (0)
=1

122, 3 b Gkl |kij<e>|) ewde} }

=1
_ 1 IR e
=l (3 - s | [ (maldso)
1 j:1

a0 5y 0)]) 200 + 22, Y GGkl [ Iy 0))eX ] et
1=1 0

1 < el o
oy D { /0 (aijfjdij(9)| + @79;18:(0)]
7 j=1
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20,3 TGk sy (0 >|)d9]

=1

_ IS e _
< ot s 3| [ (el 0]+ 50,1550
7 j=1

125, 3 Gkl |kij<e>|)d9] < pMibze an

=1

Direct differentiation of (11) gives

yi ()

= —ci(1)g;(0)e Jo el
*3 e () | a1 (e 0) 4 w50 0) = syta e - )

+Zaw /ﬁu Syt = 0) + (@) (t = 0) — hy((a) (¢ — 0))]do

L3S bt (/ kg (0) (g (4 (¢ — 6) + (¢ — ) — g}t — 0))]dB
j=11=1

< [ ka0t~ 0) + o1 - )0

+ biji(t iy (0)g; (25 (t — 0))d0

>3 b ([ b

</ " ka(O) ot — 0) + 27 (¢ — 0)) — (i (¢ - 9>>]d0)

—/Ot CW“[Z% ) [ s @1 (s -0+ 50— 0)
(s - )]0+ 3 bl ([ st - 0)

j=11=1

+aj(s —6)) = g;(23(s — 0))ldf / " ka(0)g: (s — 0) + i (s - e>>d9)
0
£33 buts ( / i1(0)9 (5 (s — 0))do

Jj=11=1

x / ka0 [gl@z(s—e)mz‘(s—e»—gz<x7(s—e>>]de)]ds, (s)

where ¢ = 1,2,...,n. Thus, we have by (9),(10),(18) and (Hz) — (Hs) that
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. ()] < M bl Jo" e d“+Zau / duj(0)|e;]y; (tr — 0)|do

+ZO‘LJ/O 18.5(0)[0; |y, (t1 — 0)]d6

+2ZZbszszf‘zJ ; [ (0)[e51y; (1 — 0)|d6

j=11=1

11 n )
+ / cfeme =) {Zananxem / 1,5 (0)le;ly; (s — 0)|d6
0 . 0
J=1

+ 3 @M e / 18,5 (0)[9; ]y (s — 0)|d6
j=1

+23 > GGk oMl [ |kbj<0>|sj|yj<se>|d0}ds
0

NE
M:

Jj=1

M t
= pM||¢|x e‘”l{cbe“—cf")tl + <1+cfw/1e(t1—s)(>\—CIn)dS>
pM )

gt

1

~

\M:

(%ej|d,,j<0>| T @50,16,(0)]

Z > bjiGigskY |ij((9)|> e’\edG] }
Jj=11=1

M
< pM|p|xe Mt Sty (14 ©
M o

L

x {Z / <%‘€j|du‘(9)| T w50,18,(0)
j=1"9

QZZbleGIEjk%|ij(9)|>ewda]}

j=11=1

|:Z/ (aueﬂdu )|+CVLJ19 |BL]( )|>
xewd9+2zzble15J N / |k, ( )|e>‘9d9}> A—c™)ty

j=11=1

M 0
+ (1 s /\) Lz:l/o (%€j|du(9)| + ;05185 (0)|

M m
L )\(1 _ B(A_C" )t1)>

— pMllx *{(
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23 ) biiGiesk |kbj(9)|) e’\edﬁ] }
j=11=1
—\t wa - R
< pM e 1<1+CT_A>[_Z | @eids0)

+ @918, (0 ’\9d9+222melsJ ”/o |kbj(9)|e>‘9d9:|

j=11=1
< pM|||[xe M. (19)

In view of (17) and (19), we obtain ||y(t1)||1 < pM||||xe~*1, which contradicts
the equality (15), and so (14) holds. Letting p — 1, then (13) holds. Hence,
the almost periodic solution of system (1) is globally exponentially stable. The
proof is complete. O

4. An example

In this section, we give one example to illustrate our result. Let

fi(z) = folz) = %Sm (212 ), hi(x) = hy(z) = %Sln (22 x),
g1(z) = go(x) = %| arctan (2%93)\,
a11(t) = 1+ cos(27t), a1a(t) = 2+ cos(2nt), a9 (t) = 2 + cos(27t),
aga(t) = 3+ cos(2mt), aq1(t) =1 +sin(wt), aia(t) = 2+ sin®(27t),
o1 (t) = 2+ cos®(2mt), ama(t) = 3+ cos(mt), c1(t) = 25 + 5sin(2nt),
co(t) = 35+ 5sin(2nt), I1(t) = 1 +sin(nt), Ix(t) = 1+ cos(wt),

1 1 . 1 1
blu(t) = bgu(t) = Z + Z SIH(TFt)7 b112(t) = bglg(t) g + g COS(ﬂ't),

1 1 1 1.
blgl(t) = b221(t) = g + g COS(’]Tt), blgg(t) = b222(t) = 6 -+ 6 sm(7rt),

o108
(5O = (s s = (Bs@aa = (TS )

Then system (1) has exactly one continuously differentiable almost periodic so-
lution, which is globally exponential stable.

Proof. By calculating,

cr = 20, c{w = 30, ¢ = 30, cé” =40, a1 = a1 = 2, @1
—_ —_ —_ —_— 3 1 3 7
3, Go1 = Qg1 = 3, Gaz = a2 = 4, binn = ba11 = 3, b112 = b1z = 3, bi21 =

1 1

5221:5,5122 b222:3,61:€2: 10’7917192: 20° 51262:@7 Gy =
— — _ — _ LM _ gM _

G2 = 75 d 11 —511 = 10, d k?12 —512 =0, d21 = ko1 = Ba1 =

0, dd = k% = 622 = %, hence we have

¢ = Lopa
- 1@?2(2 maxy e cm

7 3

12 =

Sl
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2 2
X Z [aijdﬁ‘fej + i B9 + 2 Zbiﬂlef‘fkf‘f] }
j=1 =1

3 T 7 T
- max{zlo * 16000" 100 © 240000} <1

It is obvious that (H;) — (Hy) are satisfied. By Theorem 2.5 and Theorem 3.2,
system (1) has exactly one continuously differentiable almost periodic solution,
which is globally exponential stable. O
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