• Title/Summary/Keyword: stability point

Search Result 1,898, Processing Time 0.027 seconds

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.235-245
    • /
    • 2019
  • This paper presents a novel methodology for face stability assessment of rock tunnels under water table by combining the kinematical approach of limit analysis and numerical simulation. The tunnels considered in this paper are excavated in fractured rock masses characterized by the Hoek-Brown failure criterion. In terms of natural rock deposition, a more convincing case of depth-dependent mi, GSI, D and ${\sigma}_c$ is taken into account by proposing the horizontally layered discretization technique, which enables us to generate the failure surface of tunnel face point by point. The vertical distance between any two adjacent points is fixed, which is beneficial to deal with stability problems involving depth-dependent rock parameters. The pore water pressure is numerically computed by means of 3D steady-state flow analyses. Accordingly, the pore water pressure for each discretized point on the failure surface is obtained by interpolation. The parametric analysis is performed to show the influence of depth-dependent parameters of $m_i$, GSI, D, ${\sigma}_c$ and the variation of water table elevation on tunnel face stability. Finally, several design charts for an undisturbed tunnel are presented for quick calculations of critical support pressures against face failure.

Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water (차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성)

  • 황영규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.

The Stability Analysis of Timoshenko Beam-Column on Pasternak Foundation (Pasternak지반 위에 놓인 Timoshenko보-기둥의 안정해석)

  • Lee, Yong-Soo;Lee, Byoung Koo;Kim, Sun Gyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.91-100
    • /
    • 2001
  • This paper is to analyze the stability of Timoshenko beam-column on Pasternak foundation, with the extensional and the rotational spring at center point of span by Finite Element Method. To verify this Finite Element Method, the results by the proposed method are compared with the existing solutionsof Timoshenko beam-column without the extensional and the rotational spring and the shear foundation. The dynamic stability regions are decided by the dynamic stability analysis of Timoshenko beam-column on Pasternak foundation with the extensional and the rotation spring at center point of span.

  • PDF

A Study on the identical basis of static voltage stability analysis methods in power systems (전력 계통 정적 전압 안정도 해석법의 동일 근거에 관한 연구)

  • Moon, Young-Hyun;Kim, Baik;Lee, Eung-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.457-466
    • /
    • 1996
  • The Voltage stability problem has recently been dealt with in the literature from various points of view. The diverse theories have been established in voltage stability analysis because of the complicates of power systems and diverse phenomena of voltage collapse. Through rigorous mathematical operations, this paper shows that all the major methods used in static voltage stability, i.e - Jacobian method, voltage sensitivity method, real and reactive power loss sensitivity method and energy function method - have an identical background in theory. The results from the test in sample systems have shown the validity of this verification. (author). refs., figs., tabs.

  • PDF

A Study on the Stability Boundaries for Single Layer Latticed Domes under Combined Loads (조합하중을 받는 단층 래티스 돔의 안정경계에 관한 연구)

  • 한상을;이갑수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.85-91
    • /
    • 2000
  • The smallest value of the load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arches were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF

A FIXED POINT APPROACH TO THE STABILITY OF QUADRATIC FUNCTIONAL EQUATION

  • Jung, Soon-Mo;Kim, Tae-Soo;Lee, Ki-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.531-541
    • /
    • 2006
  • [ $C\u{a}dariu$ ] and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we adopt the idea of $C\u{a}dariu$ and Radu to prove the Hyers-Ulam-Rassias stability of the quadratic functional equation for a large class of functions from a vector space into a complete ${\gamma}-normed$ space.

The Effect of Wind Load on the Stability of a Container Crane (풍하중이 컨테이너 크레인의 안정성에 미치는 영향 분석)

  • Lee Seong Wook;Shim Jae Joon;Han Dong Seop;Park Jong Seo;Han Geun Jo;Lee Kwon Soon;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • This study was carried out to analyze the effect of direction of wind load and machinery house location on the stability of container crane loading/unloading a container on a vessel. The overturning moment of container crane under wind load at 50m/s velocity was estimated by analyzing reaction forces at each supporting point. And variations of reaction forces at each supporting point of a container crane were analyzed according to direction of wind load and machinery house location. The critical location of machinery house was also investigated to install a tie-down which has an anti-overturning function of container crane at the land side supporting point.

Dynamic Stability Regions for Arches

  • Park, Kwang-Kyou;Lee, Byoung-Koo;Oh, Sang-Jin;Park, Kyu-Moon;Lee, Tae-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.819-823
    • /
    • 2003
  • The differential equations governing the shape of displacement for the shallow parabolic arch subjected to multiple dynamic point step loads were derived and solved numerically The Runge-Kutta method was used to perform the time integrations. Hinged-hinged end constraint was considered. Based on the Budiansky-Roth criterion, the dynamic critical point step loads were calculated and the dynamic stability regions for such loads were determined by using the data of critical loads obtained in this study.

  • PDF

FUZZY STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION WITH THE FIXED POINT ALTERNATIVE

  • SEO, JEONG PIL;LEE, SUNGJIN;SAADATI, REZA
    • The Pure and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.285-298
    • /
    • 2015
  • In [41], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed positive integer l holds for all x1, ⋯ , x2l ∈ V . For the above equality, we can define the following functional equation Using the fixed point method, we prove the Hyers-Ulam stability of the functional equation (0.1) in fuzzy Banach spaces.