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A Study on the Identical Basis of Static Voltage Stability
Analysis Methods in Power Systems

E** . ’?F’: E )ﬁj{***

(Young-Hyun Moon * Baik Kim * Eung-Hyuk Lee)

Abstract — The voltage stability problem has recently been dealt with in the literature from various points of view. The
diverse theories have been established in voltage stability analysis because of the complicates of power systems and diverse
phenomena of voltage collapse. Through rigorous mathematical operations, this paper shows that all the major methods used
in static voltage stability analysis, ie. - Jacobian method, voltage sensitivity method, real and reactive power loss sensitivity
method and energy function method - have an identical background in theory. The results from the test in sample systems

have shown the validity of this verification.
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1. Introduction

The voltage stability problem is a relatively new research
subject in power system analysis. The incidents of large
scale blackouts caused by voltage instability in 1970's in
Europe and America gave an impetus for the theoretical
development of voltage stability analysis. Moreover, the
blackout in Tokyo in 1987 attracted increasing attentions
throughout the world. However, diverse theories of voltage
stability resulted from diverse
phenomena of voltage collapse. Various approaches have

analysis have been

been presented by analyzing only local phenomenon of
voltage collapse. The main difference between conventional
system analysis and voltage stability analysis is due to the
fact that voltage instability is a structural instability of
system caused by parameter variation. Consequently, it is
very difficult to formalize and solve the problem. Jacobian
method[1, 2], voltage sensitivity method(3, 4], real and reac-
tive power loss sensitivity method[5, 6] and energy function
method(7, 8] are the major methods used in static voltage
stability analysis up to now. In this paper, it is proven that
all the above-mentioned major methods have an identical
background in theory. Finally, two illustrative examnples are
given for several sample systems, which will show the
validity of this verification.
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Voltage stability, Voltage sensitivity, Loss sensitivity, Energy function, Stable Equilibrium Point, Unstable

2. Classification of Static Voltage Stability
Analysis Methods

In this section, various methods of voltage stability
analysis are examined to show that all of the methods have
an identical background in theory.

2.1 Jacobian Method

Voltage instability is due to the structural instability of
the system resulted from the change of system parameters.
Some special case of parameter changes the system state
transfers to the saddle node. If this case happens, small
variations of the parameters can make the system state
branch off into two kinds of nodes, ie. - stable node and
unstable  node(Bifurcation
method exploits the condition of saddle node bifurcation by
examining power flow solutions with the changes in bus

Phenomenon). The Jacobian

injection powers. Let the given system be represented as
below,

x=fAx, u) (n

It is well known that the saddle node bifurcation condition
is given as follows[9].

af

ox =0 @

x=x"

For a power system, the bifurcation condition is given by
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On the basis of the Jacobian method, the determinant or
the least absolute value of the eigenvalues is sometimes
utilized as a performance index of voltage collapse.

2.2 Voltage Sensitivity Method

The voltage sensitivity method is the most direct
approach using the voltage sensitivity to system parameters.
The voltage sensitivity goes to infinity at the collapse point.
This collapse condition should be identical with that of the
Jacobian method, which will be proven here. From the
power flow equations, we can get the following differential

relationship.
[dP :[HN][dﬁ (4)
aQ M L dVv
_JaP 0P %) _99 b
where H= 50 =37 M= 56 L= 31 which are

the sub matrices of the Jacobian of the power flow
equations. Here, it should be noted that all the sub
matrices H, N, M and L are nonsingular in the normal
operation state of the power system since they have
dominant diagonal elements. From Eq.(4), dfand dV are

calculated as follows.
[av]=[¢ 5] [%] ®

where
A= (H-NL"'m7™!

B=—H 'N(L-MH ‘N

C=—L"'"M (H-NL'm~"

D= (L-MH N
Eq.(5) gives
dV=C-dP+D- dQ (6)

In the above equations, | Cll or | D] should be infinite
in order to have the infinite voltage sensitivity at a certain
bus. That is, matrices C'=—(H-NL'MM 'L or
D'=L—MH "N should be singular at a voltage collapse
point. Regarding the singularity of matrices C 'and D7,

we have developed the following theorems.

Theorem 2.1
Let matrices H, N, M and L be nonsingular. If any of

the matrices A™!, B™!, C"land D! is singular, then the
others are also singular.

Proof

Matrix A”' can be rewritten as follows.

AT'=H-NL'M =(I-NL"'MH™MYH
=NN'-L'"MHYH
=NLY (LN '-MH YH
=NL™WL-MH'"NN'H

Hence,

de{ A" =def( D) - det(L™") - det( H) 7

Similarly, we can obtain the following equations.

def{ B™") =—de(L—MH'N) - det N"'H)
(8
=—def(D7) - det( N™") - det( H)

def C™') =—de{ H—NL™'M) - det{ M'L)
=—deA™") - de M'L) )
=—de(D”") - det{ M) - det( H)

Hence, when matrix D' is singular, matrices A", B~
and C™! are also singular. The other cases can be proved

in a similar way.
Q.ED.

Theorem 2.2

Let matrices H, N, M and L be nonsingular. If any of
the matrices A™', B!, Cland D' is singular, then the
Jacobian is also singular.

Proof

7 =[ar 2 ] =L T[0 7]
Larw 2% 9100 9]

Hence,

det(]) =det([MHJYlN ﬂ)'def( Ag‘ [}])de[([gﬂ})

= det(| MIVN L MEON |)- dev - der i
=def(L—MH ' N) - det(N) - dei{ N ") - det( 1)
=def{L. —MH 'N) - det( H)

=det(D") - det( H)

10



From Theorem 2.1, when any of the matrices A~!, B™!
and C7!is singular, matrix D™! is singular. Consequently,
Eq.(10) proves that the Jacobian is singular if any of the
matrices A7}, B!, C'and D! is singular.

QED.

By combining Theorem 2.1 and Eq.(6), we can conclude
that the voltage collapse condition of the voltage sensitivity
method implies that matrices A~ !, B!, C 'and l)—1 are
all singular. In reverse, if any of AL B Cland D!
is singular, the voltage sensitivities at some buses are
infinite. Therefore, we can confirm that both of the Jacobian
method and the voltage sensitivity method provide the
identical voltage collapse condition by using Theorem 2.1
and 2.2.

2.3 Power Loss Sensitivity Method

The voltage collapse phenomenon is accompanied with the

rapid increase in line flows. At the collapse point, the loss

o APy Py dQus o Qs )
Increasing ratios aP ' dQ ° dP an 40 go to

infinity. This fact provides the theoretical background for
the power loss sensitivity method. In this section, it is
proven that the voltage collapse condition by the power loss
sensitivity method is identical with that by the Jacobian
method. Real and reactive power losses of transmission lines
can be expressed as a function of system state vectors, V

and 6.

Pus = (0, V)
Qk)ss = fg(g, V)
Hence,
0P 0P
[ng =30 v |[%
foss 0Qus Qs
a0 oV

The substitution of Eq.(5) into the above equation gives

OPun 0P
R E AL
foss aQIoss aQIoss
30 oV
[ 0P poss 0P s OP 155 0P s
-0 ATV € 20 B+ a%V D [Zg
Qs 0Q s Qioss Ioss
26 At v € ¢ BtHv D w
11

In the above equations, it is noted that at least one of the
matrices A, B, C and D should have an infinite norm in
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order to make the differential sensitivity of Pp, OF Qg
infinity. That is, at least one of the matrices
A7, B!, C'and D' should be singular, which makes
the Jacobian matrix singular by Theorem 2.2. As a result,
it can be concluded that the power loss sensitivity method
is identical to the Jacobian method.

2.4 Energy function method

Energy function method is to determine the system
stability by comparing the energy difference between
unstable equilibrium points(UEPs) and a stable equilibrium
point(SEP). If the voltage of SEP and the voltage of UEP
coincide, the energy difference between them will be zero
and bring about voltage collapse. The saddle node
bifurcation phenomenon occurs when UEP coincides with
SEP, which also makes the energy difference =zero.
Consequently, the energy function method provides the same
voltage collapse condition as the saddle node bifurcation
method. By using the energy function, the saddle node
bifurcation conditions can be expressed as follows.

| _

ax' =0 (12)
2

’% =0 (13)

The Eq.(12) describes the equilibrium condition of the
system with the use of the energy function. This equation
yields a SEP and UEPs as the solutions. Eq.(13) represents
the condition that the SEP coincides with an UEP, which is
just the voltage collapse condition. In order to keep the
consistency in the voltage stability analysis, this condition
should agree with the collapse condition of the Jacobian
method that the Jacobian matrix is singular at the voltage
collapse point.

The energy function includes several path-dependent
integral terms. To solve the path-dependency problem, we

assume that P, P, Qg and Qg are all constants and
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Fig. 1 Multiport Representation of Power Systems
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that line resistances are small enough to be ignored. The

power systems can be represented by the multiport network
(Fig. 1).
The energy function of the power system is given by[10):

y= %Z{Zb,,( V- Vb

=1

+ 20 Vy Viecos 8y — V;V,cos 0,,)}

Z
n ]/l
2 L;( 8,— 5,1)) - Z:l( Qci—Qr)log V.

+5 2 bal EA- Eq)

+ 3 (b EaVicos (8, —0g) — E:Vicos (3,—0)))
13 02— 3 Putsi-s0- 3 [ 2 gp,
2;=1 POET gy Pl 000 T e g TR, 4

(14)

where

b; * Line susceptance between bus i and bus j
bg; © Generator internal susceptance

M; . Generator inertia , w; - Angle velocity
V, : Bus Voltage

P, Real power load

E; ! Generator internal voltage,
Pu; ¢ Generator mechanical output,
Qg ° Generator reactive power output

Qi © Reactive power compensation, &;;: Reactive power load

m  Number of generators, n : Number of buses

With the use of energy function Eq.(14), the partial
differentials with respect to V; and E; are given by :

‘_a‘l/_ = 2 b,‘j V,'_ g b,‘,’V,‘ Cos 6,‘,’
7*i

AL i
- ﬁl};@ﬂ ~ bgiEicos (8;~ 6))
=0
i=12 .. , n) (15.a)
Qi
—aQE—_—bG,E baiVicos (8,—0) — 72 =0
Gi=12 ..,m (15.b)
Multiplying Eq. (15.a) and Eq. (15b) by V; and E;
respectively gives
Qpi— QL= 2 by Viz - 2 b;V:Vicos b
1¥EL 7+
_b(;,'E,‘ViCOS(B,‘_ﬁ,')
G=1 2 .. , n) (16.a)
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Qci= b Ei* —bgE,Vicos (6~ 6;)
=12 .., m) (16.b)

If the above Qg is viewed from the system bus i, this

will be converted as follows.

Qci' =—bg Vi +bGE;Vicos(8;—6))
i=12 ..,m (16.c)

By substituting Eq.(16.c) into Eq.(16.a) for all generator
buses, we can obtain the following reactive power equation
at system bus I.

Qi +Qui—Qui=3 b; Vii—

7+

;, b;V:Vicos 0;—bg Vi
JF1

(17

Here we will assume that E; is constant for the

consistency with the other voltage stability methods, which

are derived in the basis of bus voltage and angle. In a
similar way, differentiating Eq.(14) with respect to &;—8,;

yields the following equations.

08 =beE;Visin(8;—0;) —P,;=0 <m (18.a)

"% = PL,'+' igi b,’jV,'V,'SiIl 0,’,“b(;,E,'V,‘Siﬂ(é‘,"0,‘) =0
i<m (18.b)

Oy

aai =PL,'+ ;,‘ b,-jV,»V,-sinﬁ,; =0 i>m (18.¢)

By substituting Eq.(18.a) into Eq.(18b) and combining
Eq.(18.c), we can obtain following real power equation.

30,' =—P,, +PL,+Z b;V;Vising; =0

G=12 .. , n) (19.a)

where P,;=0 if i>m

By using Eq.(16.c), we can eliminate cos(5,—&,) in
Eq.(15.a) and then Eq.(15.a) can be rewritten as :

v Q i'+Q i — QL
17 ; b;Vi— 2 b,,VcosG,,—#‘ch—-—-—L—bG,-V,
(=12 .., n (19.b)

Obviously the above equation is the reactive power
equation in the power flow problem. The second order
partial differential of the energy function can be obtained by
differentiating Eqgs.(15)b), (18.a), (19.a) and (19.b), which
yields the following voltage collapse condition.
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Here, the elements of K, T, H, N, M and L are as

follows.
K.,=M,, K;=0 (21.a)
Ti=bgE;Vicos(8,—8), T;=0 (21.b)
Hij‘ =Hy, Ni;" =Ny, Mi)" =M;/V; Li;" =L;lV;
(21.c)

Since | K| #+ 0and | T| # 0, the Eq.(20) can be rewrit-
ten as follows.

Vslack

_ Ve |HN|_
VAN 0 (22)

H
il

This shows that the voltage collapse condition derived
from the energy function is exactly the same as that of the
Jacobian method.

3. lliustrative Examples

To verify the results of this study, we choose the 2-bus
and 5-bus sample systems. The voltage collapse point of
2-bus system is analytically derived and the voltage
collapse condition of 5-bus system is numerically examined.

3.1 2-bus System

Consider the 2-bus sample system with an infinite bus
shown in Fig. 2.

10 V2 /02
g _ge |
B
Inf. B .
w P; +jQ2

Fig. 2 One-line Diagram of 2-bus System
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The power flow equation in the load bus is given as

follows,
Pz = VzBSin 02 (23)
Q,=—BVycos0,+ VB (24)

These equations are very basic equations in voltage
stability analysis for the 2-bus system, which will be
invoked in all kinds of the voltage stability analysis
methods.

3.1.1 Jacobian Method
By differentiating  the above equations, we have the
following equations.

dPy 1 _[ VyBcos §, Bsin 0, do; 1~ Ji do,
] s || ]~ @]

dQ, V,Bsin@, —Bcos@,+2V, dav, dv,
(25)
Voltage collapse condition is | J| =0, so
2V5c086,=1 (26)

From Eqs.(23) and (26) eliminating 6, yields the next
collapse voltage.

P2
V,= %+ = @7

3.1.2 Voltage Sensitivity Method

The power flow equations for the system in Figl are
given by Egs.(23) and (24). From these two equations
eliminating ¢, yields

P2+ (Q— ViiB)Y'= V,°B 28)

Differentiating and arranging the above eguation yields
the voltage sensitivities as follows.

RPN (4}
av, | Pt (@ Vi B gp, 29
dpP, V,B'—2 V,°B*+2V,BQ,
dpP, 2
dVg _ Pz‘d_Qz +Q2 V2 B (30)

dQ, ~ V,B*-2 V,’B*+2V,B@,
In the observation of the above two equations, it is

obvious that the voltage sensitivities become infinite when
common denominator is zero, that is,

Q,= ngB—%B 3D
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Substituting Eq.(31) into Eq.(28), we can obtain the
collapse voltage same as given Eq.(27).

3.1.3 Power Loss Sensitivity Method

Since there is no active power loss in the given system,
we will examine only the reactive power loss. The reactive
power loss of the system is given as follows.

Qus=B—2V,Bcos 0:+ V,°B (32)

From Eq.(24) and Eq.(32) eliminating 6, yields

Qus=B+2Q,— V,°B (33)

Differentiating the above equation yields the reactive
power loss sensitivity as follows.

dQloss
dQ,

av,

=2-2 VZBFQ:~

(34)

should he infinite to make the above

sensitivity infinity, which is the same condition as given in

dv,
Here, TQz

Eq.(30). Consequenily, the collapse voltage is given same as
in Eq.27). On the other hand, the reactive power loss
sensitivity to real power increase can be calculated as
follows. From Eq.(23) and Eq.(32) eliminating 8, yields

1 2
2 -(B‘+ Vg B_anss)
—IIZ B] + l 2 =1 (35)

V.B

Differentiating the above equation with respect to P,

yields the following loss sensitivity.

3p2, 1 2 dV
Qs ( V"B + 5 VoB” — V2BQuss) AP, +2P,

dP, ~—

H(Qu—B— V,?B)
(36)

Here, it is necessary that either the denominator should
should be infinite to make the above

sensitivity infinite. First, when the denominator is zero, the

dv,

be zero or d_P;
next equation is derived by using Eq.(32).

Vycos 8, =90 (37)

But the above equation corresponds to the condition that
| H| =0, which is the condition of angle instability.

dV.
Hence, this should be excluded. When _571# is infinite, this

condition is the same as in Eq.(31). Consequently, the
collapse voltage is given same as in Eq.(27).

462

3.1.4 Energy Function Method

The static energy function for the 2-bus system can be
derived by using Eq.(14).
U( 02, Vz) = ‘%—B( ng - V202) _B( VZCOS 02_ VgoCOS 92())

V.
—Py(8,— 920) —Q:log thzo
(38)

First, applying Eq.(12) to Eq.(38) yields the next power
flow equations as mentioned earlier.

P, = V,Bsin b, (23)
Q,=—BV,cos0,+ V,°B (24)

Next, applying Eq.(13) to Eq.(38) vields

2 2
_af_;e_l/z 79—(—9% __l | VsBcosb, Bsin g,
& 22 2 Vs | VyBsin#, — Bcos 8,+2V,B
v _ 9%y _
V08, 4 V,°
=% 171 =0 (39)

The above condition is the same as in Eq.(26).
Consequently, the collapse voltage is given same as in
Eq.(27).

As mentioned earlier, both UEP and SEP of energy
function become the solutions of power flow equations. The
relationship between both solutions is shown in Fig.3 and
Fig4. Here, the following assumptions were adopted. 1)
Load has lagging power factor. 2) Reactive load is 2 p.u.
As the real
load P, increases, two solutions of power flow equations

3) Reactance of transmission line is 0.04 p.u.

approach each other and finally coalesce at the load P, =
10.35 in Fig.3. At this moment, we can observe that both

1 1
0.9123
09—l J

oal \ ]
07 No. 6492
06 / B

Sest P |

03t e ]

02 4 N

01— '

a 2 El & 3 10 12
P2

Fig. 3 Transition of Multiple Power Flow Solutions with
Real Power Increase



UEP and SEP of energy function coalesce and energy
difference between them becomes zero in Fig.d. Here, it is
noted that the voltage collapse occurs when the system
loses the stable equilibrium point by the change of system
parameters. Fig4 illustrates this fact in manifest. Hence,
the collapse voltage is V, = 06492 and this value is
exactly the same that is calculated by using Eq.(27).

ENERGY

U U2 0.4 Ob 0.8 1 12
V2

Fig. 4 Transition of UEP & SEP with Real Power Increase

3.2 b-bus System

The Stagg & El-Abiad’s 5-bus system[11] is taken as a
sample system for an illustrative example. We considered
two scenarios of load increase for the 5-bus system. The
first scenario{Fig.6) is scheduled so as to increase all of the
loads with identical rates. The second scenario(Fig.7) is
scheduled so as to increase only the load at No5 bus while
the loads at the other buses remain constant. In both
scenarios, the power factor of each load is assumed to be
constant, and the load increasing rate K is defined as the
ratio of the increased load per the normal load.

In Fig6 and Fig7, (a) represents the Jacobian's
singularity by using the minimum singular value of J.
(b),(e),{d) and (e) represent the bus voltages, the voltage
sensitivities and the power loss sensitivities respectively.

Fig.6 shows that the voltage collapse occurs at the load
increasing rate K=3.035. At this point the Jacobian matrix

Do Jo L@

@- ™1

G

Fig. 5 One Line Diagram of the 5-bus System
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022 T T T T
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Fig. 6 In case of All Loads Increasing

becomes singular, and both of the voltage sensitivities and
the loss sensitivities go to the infinity. In Fig.7, we can
observe that the voltage collapse occurs when the load
increasing rate becomes K=4.410 at bus 5.

It is well known that there is a great difficulty in
handling path dependent integral terms of the energy
Here an alternative method is adopted instead of
calculating the energy difference directly. As mentioned
earlier, both UEPs and a SEP of energy function are the
multiple power flow solutions, so if an UEP and a SEP
coalesce, the energy difference between them becomes zero

function.

obviously. Theoretically, there can be 2"7' power flow
solutions for the lightly loaded n-bus system.12] As the

loads increase, the number of solutions decreases and
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Table 2 Transition of SEP & UEP in Case of Increasing
Loads at No5 Bus
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73]
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10+ - /’/P‘, ,j l"
. T L //’
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Fig. 7 In case of One Load Increasing

Table 1 Transition of SEP & UEP in Case of Increasing
Loads at All Buses

Solutions | Voltage| K=250 | K=3.00 | K=3.03 | K=3.035
V2 0.9337 | 0.8347 | 0.8133 | 0.7999
SEP V3 0.8591 | 0.7188 | 0.6890 | 0.6704
V4 0.8525 | 0.7065 | 0.6753 | 0.6556
Vh 0.8239 | 0.6508 | 0.6116 | 0.5863
V2 0.6801 | 0.7659 | 0.7866 | 0.7999
UEP V3 0.5373 0.6237 0.6520 0.6704
V4 0.5067 | 0.6062 | 0.6362 | 0.6556
V5 0.3099 | 05190 | 0.5606 | 0.5863

=Y 2Ho| 2uE AT

i

Solutions | Voltage| K=3.00 | K=4.00 | K=4.40 | K=4.410
V2 0.9940 | 0.9418 | 0.8852 | 0.8750
SEPp V3 09643 | 0.9056 | 0.8414 | 0.8299
V4 0.9569 | 0.8916 | 0.8200 | 0.8071
V5 08912 | 0.7720 | 0.6420 | 0.6183
V2 0.7485 | 0.8057 | 0.8648 | 0.8750
UEP V3 0.6833 | 0.7502 | 0.8182 | 0.8299
V4 0.6416 | 0.7175 | 0.7940 | 0.8071
V5 0.2913 | 0.4493 | 0.5943 | 0.6183

eventually there remain one UEP and one SEP.[8] Tablel
and Table2 show that heavily loaded system has only a
pair of UEP and SEP.
that these two solutions approach each other and coalesce

As the loads increase, we can see

eventually at the same load conditions shown in Fig.6 and
Fig.7, ie., K=3.035 and K=4.410 respectively.

4. Conclusions

Through rigorous mathematical operations and examples,
this paper has shown that all of the major methods used in
static voltage stability analysis, ie.
voltage sensitivity method, real and reactive power loss

- Jacobian method,

sensitivity method and energy function method ~ have an

identical background in theory. The results can be
summarized as follows.

(1) No matter which method is considered, the voltage
collapse condition comes to a conclusion that the Jacobian of
the power flow equations is singular.

(2) The identity of the methods of voltage collapse
analysis is illustrated with the sample system study.

(3) The results of this study provide some ideas about
inter-relationship between various VCPIs(Voltage Collapse

Proximity Indices) defined on the basis of various methods.
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