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Dynamic Stability Regions for Arches
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ABSTRACT

The differential equations governing the shape of displacement for the shallow parabolic arch subjected to
multiple dynamic point step loads were derived and solved numerically. The Runge-Kutta method was used to
perform the time integrations. Hinged-hinged end constraint was considered. Based on the Budiansky-Roth
criterion, the dynamic critical point step loads were calculated and the dynamic stability regions for such loads
were determined by using the data of critical loads obtained in this study.

1. Introduction

The dynamic behavior of the arch
important in the
06 g

is  very
fields of structural engineering

their citations included the
governing equations and significant historical literatur
on the dynamic stability of arches. Budiansky and
Roth™ reported on the axisymmetric dynamic
buckling of clamped spherical shells. Lock®? studied
on the snapping of a shallow sinusoidal arch unde
the step pressure load. DaDDepo and Schmidt™
investigated the stability of two-hinged circular arches
Lo and Masur' reported the dynamic stability
boundaries for the sinusoidal arch with pulse loads.

The main purpose of the present paper is to
obtain the dynamic stability regions for the shallow
parabolic hinged arches. In the numerical examples,
the dynamic critical point step loads and the dynamic
stability regions for the multiple such loads are
reported.
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2. Mathematical Model

Figure 1 shows the two-hinged shallow parabolh
arch whose span length and rise are L and H,
respectively. The dashed line is the netural axis o
undeformed arch expressed as Yy (X). The solid
curve is the middle surface of deformed arch due to
the multiple dynamic point step loads P(X,, 1),
Py(X,, T),,Py(Xy, T), that is depicted as Y(X,
T). Here X and Y, Y are the rectangular co-
ordinate and 7 is time.

It is assumed that the Bernoulli-Euler beam theory"”
governs the relationship between load and displacement
of element of arch subjected to the loads, stress
resultants and inertia forces. Then the partial differential
equations of the arch element are

P, T)

Fig. 1 Shallow parabolic hinged-hinged arch subjected
to multiple dynamic point step loads.
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ENY(X, T)—Yy(X)] xxxx+ NY(X, T) xx

+ ,ﬁ:'lpi(xi, T)+pY(X,Y) 77=0 0

L
N=(EA/2L) fo [V 2X) xx— YHX, T) xldX
)

where the subscripts X and T are the operators
3/0X and 0/3dT, respectively. The EI and EA are
the flexural and axial rigidities, respectively. And the
p is the mass per unit length of X-axis which is
assumed to be constant in the shallow arches®™. In
Eq. (1), N is the horizontal thrust which can be
calculated by Eq. (2) and is not varied along the X-
axis.

Here the following displacement function is
introduced as follows.

WX, T)=Yy(X)- VX, T) (3)

To facilitate the numerical studies and to obtain
the most general results for this class of problems, th
following non-dimensional system parameters are cast.

x=X/L 4.1
y(x,t)=Y(X, T)/(2VI/A) 42)
vo(x)= Y,(X)/(2V I/ A) (4.3)
h=H/(2V I/ A) 44
t=(T/LYV Ellp (45)
pi(x,t) = Pi(X;, T)L}/ QEIxV T/A),

i=1,2,~, M 46)

When Eq. (3) is substituted into Egs. (1) and
(2), and Egs. (41)-(46) are wused, the non-
dimensional forms of Eqgs. (1) and (2) become

W(x,t) 4+ WK, 1) T IW(K, 1) 1 —nYo(X) x
=7 ,ﬁ:'x oz, D G)

1
n=2 [ [2w(x,0) xo(x) x— W (x,0) ldx )

in which w(x,t) is the non-dimensional form of Eq
(3) expressed as

w(x,t) =y (x)—y(x,t) %

The boundary conditions for hinged ends are

(81, 82)
(83, 84)

w(0,t)=0, w(0,t) x=0
w(l,t)=0, w(l,t) =0

3. Shape of Arch and Displacement Function

In this study. the shape of shallow arch and the
displacement function of Eq. (7) are selected as
parabolic and sinusoidal functions, respectively. First

the shape of the parabolic arch Yy(X) in Fig. 1 can
be defined as Yo(X)=4H(X*—2X)/L* and its

non-dimensional form obtained by Egs. (4.3) and
44) is
yo(x)=4hx(1—x), 0<x<1] 9

Second, the displacement function of Eq. (7) is
given in the form of

wix,t) =yu(x)—y(x,t)= zla"(t) sin( krx),

0<x<1 (10
Here k is the mode number, a,(t) is the amplitude
of kth mode, sin(knx) is the shape function of k
th mode and m is the total mode number
considered. It is noted that the displacement function
of Eq. (10) satisfies Eqs. (8.1)-(84) for the boundary
conditions of hinged arches.

Substituting the related partial derivaties obtained
by Eaqs. (9) and (10) into Egs. (5) and (6), and
integrating from x=0 to x=1 gives the following
Eqgs. (11) and (12), respectively.

a, + k'r'a, —nk’r%a, + (16hn/kx){1 — cos (kx)}

1
=27 fo p(x, t)sin (k 7x )dx an

n=1{(32h/7) glk 13,{1— cos(kn)}— Zlkznzaﬁ
(12)
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in which the subscript (*°) is the second derivaties
with respect to t. When the dynamic load function
pi(x;,t) in Eq. (5) is given, the non-dimensional
displacement function of Eq. (7) and thrust n can be
determined by the appropriate numerical methods.

4. Criterion of Dynamic Critical Loads

The dynamic critical load is defined by the load
that the response parameter is suddenly increased due
infinitesimal load
parameters of the critical loads are as (1) the ratio of
arch; (2) the
deflection at middle span of arch; (3) the snap-
through; and (4) the root square after intergrating

to an increment. The response

mean deflection to mean rise of

the square of the deflection.

In this study, the fourth criterion of above
response parameters is used, which is proposed by
Budinansky and Roth". By the definition of the

fourth criterion, the non-dimensional response
parameter u(t) is represented as
1
u(t) =L [ whx, )ax] " (13)

5. Numerical Examples and Discussion

Based on the above analysis, a general FORTRAN
computer program was Wwritten to calculate the
dynamic critical point step loads. The Runge-Kutta
method was used to perform the time integrations of
the differential equations Egs. (5) and (6), which is
popularly used for the initial value problems.

For these studies, suitable convergence of solution
was obtained under m=5 for obtaining the three
figure accuracy of solutions as shown in Fig. 2.

The numerical results, given in Fig. 3-6, are

summarized as follows, in which all the Iload
parameters and geometries of arches are expressed in
non-dimensional forms. Figure 3 shows the

relationship between dynamic critical point step load
parameter p., and its load position parameter x; for
one point loading with h=2, 3, 4. In the range of
0<x,<0.5, the pi, value decreases, and becomes

minimum, and then increases as the load position
parameter x; increases. From this figure, the most

weak position parameter x, can be determined. For

example, the most weak position parameter x, for

h=4is 0.34
4 T
P p
30 L]

PR U T WIS T TR SN B W

10

L S e S S e N ML S S L N B i

04;.].}.!..

0 2 4 6 8 10
mode numbers

Fig. 2 Convergence of dynamic critical point step
loads with increasing number of modes

20

LI B S G S M A B S L L L

Xy

Fig. 3 p,., versus x, curves for one point loading

Figure 4 shows the p;., versus h curves for on
point loading. The p,., increases as the h increases.

Figure 5 shows the p,,, Pr and p3, versus h
curves for three point loads with x,=1/4 , x;=1/2
and x3=23/4 , respectively. See the load combitation
in the legend of this figure.
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Fig. 4 p,, versus h curves for one point loading
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Fig. 6(a) Definition of loads and its positions
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Fig. 6(c) Load case of p;, p,=0 and p,
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Fig. 591, , Doy and ps., versus h curves for three
point loads
15

10

D

Fig. 6(b) Load case of p,, p; and p3=0
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Fig. 6(d) Load case of p;=p, and py

Fig. 6 Stability regions for three dynamic point step loads
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Figure 6 shows the examples of stability regions
of arches subjected to three dynamic point step loads.
The load position parameters are defined in Fig. 6(a),
and stability regions of three load cases of (;, ps,
p3=0), (p, =0, p3) and (p,=1ps
presented in Fig. 6(b), 6(c) and 6(d), respectively. In
these figures, each solid curve is the stability
boundary of corresponding case, and the lower part
of each stability boundary is the stability region. For
example, the load- case(th=3) of (p,=1, p,=1.5,

pp) are

#7=0) marked as [l is safe since this point places
in the lower part of stability boundary while that of
(p1=2, $,=2.5, p;3=0) marked as @ is unsafe
since this point places in the upper part in Fig. 6(b).

6. Comcluding Remarks

The differential equations for the multiple dynamic
critical point step loads of shallow parabolic hinged
arches were formulated and solved numerically. The
Runge-Kutta method was used to perform the time
integrations and Budiansky-Roth criterion was used to
determine the dynamic critical loads. As the numerical
results, the dynamic critical point step loads and
stability regions are reported in figures. The result
obtained in this study can be utilized in the dynamic
stability problems of shallow parabolic hinged arches.
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