• Title/Summary/Keyword: stability equations

Search Result 1,364, Processing Time 0.031 seconds

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

ON EXISTENCE THEOREMS FOR NONLINEAR INTEGRAL EQUATIONS IN BANACH ALGEBRAS VIA FIXED POINT TECHNIQUES

  • Dhage, B.C.
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.33-45
    • /
    • 2001
  • In this paper an improved version of a fixed point theorem of the present author [3] in Banach algebras is obtained under the weaker conditions with a different method and using measure of non-compactness. The newly developed fixed point theorem is further-applied to certain nonlinear integral equations of mixed type for proving the existence theorems and stability of the solution in Banach algebras.

  • PDF

Universal SSR Small Signal Stability Analysis Program of Power Systems and its Applications to IEEE Benchmark Systems

  • Kim, Dong-Joon;Nam, Hae-Kon;Moon, Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.139-147
    • /
    • 2003
  • The paper presents a novel approach of constructing the state matrix of the multi-machine power system for SSR (subsynchronous resonance) analysis using the linearized equations of individual devices including electrical transmission network dynamics. The machine models in the local d-q reference frame are integrated with the network models in the common R-I reference frame by simply transforming their output equations into the R-I frame where the transformed output is used as the input to the network dynamics or vice versa. The salient feature of the formulation is that it allows for modular construction of various component models without rearranging the overall state space formulation. This universal SSR small signal stability program provides a flexible tool for systematic analyses of SSR small-signal stability impacts of both conventional devices such as generation systems and novel devices such as power electronic apparatus and their controllers. The paper also presents its application results to IEEE benchmark models.

Small signal stability analysis of power systems with non-continuous operating elements by using RCF method : Modeling of the state transition equation (불연속 동작특성을 갖는 전력계통의 RCF법을 사용한 미소신호 안정도 해석 : 상태천이 방정식으로의 모델링)

  • Kim Deok Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.342-344
    • /
    • 2004
  • In conventional small signal stability analysis, system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of state matrix. However, when a system contains switching elements such as FACTS devices, it becomes non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is by means of eigenvalue analysis of the system periodic transition matrix based on discrete system analysis method. In this research, RCF(Resistive Companion Form) method is used to analyse small signal stability of a non-continuous system including switching elements'. Applying the RCF method to the differential and integral equations of power system, generator, controllers and FACTS devices including switching elements should be modeled in the form of state transition matrix. From this state transition matrix eigenvalues which are mapped to unit circle can be calculated.

  • PDF

Stability Analysis of Cracked Beams with Subtangential Follower Force and Tip Mass (경사 종동력과 끝질량을 갖는 크랙 보의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik;No, Tae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1410-1416
    • /
    • 2009
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a cracked cantilever beams subjected to follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cracked cantilever beam as slenderness ratio and crack severity is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and crack severity on the critical follower force, stability and the natural frequency of a beam are investigated.

Dynamic Stability Analysis of Axially Oscillating Cantilever Beams with a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.718-723
    • /
    • 2000
  • Dynamic stability of an axially oscillating cantilever beam with a concentrated mass is investigated in this paper. The equations of motion are derived and the derived equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Under certain conditions of the frequency and the amplitude of oscillating motion, parametric instabilities may occur. The multiple scale perturbation method is employed to obtain the stability analysis results. It is found that the system stability varies with the magnitude or the location of the concentrated mass. Instability increases as the concentrated mass approaches to the free-end or its magnitude increases.

  • PDF

Dynamic Stability Analysis of Clamped-Hinged Columns with Constant Volume (일정체적 고정-회전 기둥의 동적안정 해석)

  • Kim, Suk-Ki;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1074-1081
    • /
    • 2006
  • This paper deals with the dynamic stability analysis of clamped-hinged columns with constant volume. Numerical methods are developed for solving natural frequencies and buckling loads of such columns, subjected to an axial compressive load. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are always held constant. Differential equations governing both free vibrations and buckled shapes of such columns are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. The numerical methods developed herein for computing natural frequencies and buckling loads are found to be efficient and robust. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are reported in figures and tables.

Application of Hyperbolic Two-fluids Equations to Reactor Safety Code

  • Hogon Lim;Lee, Unchul;Kim, Kyungdoo;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • A hyperbolic two-phase, two-fluid equation system developed in the previous work has been implemented in an existing nuclear safety analysis code, MARS. Although the implicit treatment of interfacial pressure force term introduced in momentum equation of the hyperbolic equation system is required to enhance the numerical stability, it is very difficult to implement in the code because it is not possible to maintain the existing numerical solution structure. As an alternative, two-step approach with stabilizer momentum equations has been selected. The results of a linear stability analysis by Von-Neumann method show the equivalent stability improvement with fully-implicit solution method. To illustrate the applicability, the new solution scheme has been implemented into the best-estimate thermal-hydraulic analysis code, MARS. This paper also includes the comparisons of the simulation results for the perturbation propagation and water faucet problems using both two-step method and the original solution scheme.

A Study on Buoyancy Effects in Double-Diffusive Convecting System(II) - Theoretical Study - (이중확산 대류계에서의 부력효과에 관한 연구(II) - 이론적 연구 -)

  • Hong, Nam-Ho;Kim, Min-Chan;Hyun, Myung-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.129-137
    • /
    • 1999
  • The time of the onset of double-diffusive convection in time-dependent, nonlinear concentration fields is investigated theoretically. The initially quiescent horizontal fluid layer with a uniform temperature gradient experiences a sudden concentration change from below, but its stable thermal stratification affects concentration effects in such way to invoke convective motion. The related stability analysis, including Soret effect, is conducted on the basis of the propagation theory. Under the linear stability theory the concentration penetration depth is used as a length scaling factor, and the similarity transform for the linearized perturbation equations. The newlly obtained stability equations are solved numerically. The resulting critical time to mark the onset of regular cells are obtained as a function of the thermal Rayleigh number, the solute Rayleigh number, and the Soret effect coefficient. For a certain value of the Soret effect coefficient, the stable thermal gradient promote double-diffusive convective motion.

  • PDF