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Universal SSR Small Signal Stability Analysis Program of Power
Systems and its Applications to IEEE Benchmark Systems

Dong-Joon Kim*, Hae-Kon Nam* and Young-Hwan Moon**

Abstract - The paper presents a novel approach of constructing the state matrix of the multi-machine
power system for SSR (subsynchronous resonance) analysis using the linearized equations of individ-
ual devices including electrical transmission network dynamics. The machine models in the local d-q
reference frame are integrated with the network models in the common R-I reference frame by simply
transforming their output equations into the R-I frame where the transformed output is used as the in-
put to the network dynamics or vice versa. The salient feature of the formulation is that it allows for
modular construction of various component models without rearranging the overall state space formu-
lation. This universal SSR small signal stability program provides a flexible tool for systematic analy-
ses of SSR small-signal stability impacts of both conventional devices such as generation systems and
novel devices such as power electronic apparatus and their controllers. The paper also presents its ap-

plication results to IEEE benchmark models.
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1. Introduction

Based on the level of modeling details required, the
small-signal oscillatory modes of a power system are di-
vided into two categories: low frequency (LF) modes and
high frequency (HF) modes. The stability of LF electro-
mechanical oscillations in power systems involves the fre-
quency range of 0.1 to 2.0 Hz. In this class of power sys-
tem analysis, only the machine and its associated control-
lers are represented by nonlinear differential equations, but
the dynamics of electrical transmission lines are neglected
[1,2].

Depending upon the system parameters and the operat-
ing point, HF modes can become highly unstable. Torsional
oscillations of turbine-generator (TG) sets [3,4], control
interactions of fast acting devices, and interaction between
TG torsional modes and controls [5] are examples of HF
modes in the frequency range from 5 to 55 Hz. Eigenvalue
analysis of HF modes requires the dynamic representation
of the transmission network and its associated apparatus
based on linearized differential equations [6].

Reference [6] reports a direct and useful approach for
the formulation of state matrix from the linearized power
system regarding an operating point including electrical
transmission network dynamics, but its application to
power systems is limited to the simple static var compensa-
tor (SVC), which is modeled in the common R-I reference
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frame. In addition, this method requires inefficient rotation
of all machine models in the local d-q reference frame into
the common R-] reference frame. References [7,8] take ad-
vantage of the time-domain simulation program to con-
struct state-space equations by numerical differentiation.
This method, however, is susceptible to inaccuracy due to
numerical differentiation. Furthermiore, it depends on the
time-domain simulation program.

The method described in this paper uses a novel ap-
proach for constructing the state matrix of multi-machine
power systems using the linearized equations of each de-
vice in its own frame. The complete set of the state matrix
is derived, simply by transforming the output equations of
both the machine and network into the other reference
frame. The flexibility of modular construction [1,2,6,&7]
adopted in the universal subsynchronous resonance (SSR)
program allows for modeling a wide variety of power sys-
tem components interconnected by an electrical transmis-
sion network, and makes the computer implementation of
adding/modifying component models easier.

A wide range of the HF small signal stability problems
in multi-machine power systems can be investigated with
this proposed program: 1) SSR; 2) torsional oscillations as
a result of interaction between a TG and either an HVDC
converter, SVC or PSS; 3) control related problems and
interaction among fast acting devices; and, 4) coordination
of controllers. The proposed SSR analysis program has
been tested against the IEEE First/Second benchmark
models for SSR study [3].
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2. System Modeling

Two sets of state system matrices are derived separately:
the linearized machine model is represented in the local d-g
reference frame based on generator rotor with use of Park’s
transformation; the other is the set of the linearized state
system matrix equations of an electrical transmission line
in the common R-/ reference frame. The overall system
state matrix is then constructed by properly interfacing the
machine and network state matrices. Model derivation of
other devices, which are modeled in a common R-] refer-
ence frame like SVC, are not described in this paper, since
it is the same as that of the transmission line.

2.1 Modeling Technique

In the process of formulating the machine equations, the
generator terminal voltage in the local d-q reference frame
is treated as the input, and the generator current is treated
as the output. Incorporating the linear models of its associ-
ated apparatus such as the excitation system, PSS, and TG
torsional system into the machine equations is straightfor-
ward. The overall linear model for the generating unmit is
represented as:

px, =A,x, +B,u +Byv, 1)
i =C,x,+Du,+Dy, )

where x, is the state vector of the generator; u, is the gen-
erator terminal voltage v,,; i, is the generator terminal cur-
rent; and v, is the control inputs of the device. The matrices
A, through D, are block diagonal. The symbol p means d/dt,
and the symbol A for a small increment is omitted in this
paper since it is clear that all linear equations are repre-
sented in terms of small perturbations.

For formulation of the network equations, all generators
are replaced by independent current sources. The infinite
bus is regarded as a generator bus, to which a HF classical
machine with a large inertia is connected. The transmission
lines are modeled with lumped RLC elements. This yields a
linear RLC network with no dependent sources. For sim-
plicity, the network reactance is considered to have no mu-
tual inductance. The procedures for derivation of network
state equations require a straightforward mathematical ma-
nipulation and are well described in [6,9]. The network
equations are described by eqns. (3) and (4):

pxn = Anxn + Bnun+Bln pun (3)

Ve =Cox, + Du, + Dy, pu, €Y

n-'n

where x, is the network state vector; u, is the set of genera-
tor current; and v,, is the set of the generator voltage.

2.2 Interfacing Machine and Network

As described previously, the machine models are repre-
sented in a local d-g with coordinates based on the genera-
tor rotor. In contrast, the network equations are formed in a
synchronously rotating R-I common reference frame. Note
that each output and input of machine equations and net-
work equations are reciprocals, i.e., each output of two sys-
tems is the input to the other systems. Therefore, it is nec-
essary to transform each output in one frame into the other
frame so that the other equations can make use of it as the
input. The transformation matrices are as follows:

cosd +i sind
070 0 0|5 (5)
sind +i cosé
r0 0 i 0

sind —cosé i
0 .

=], = i
88 dg cosd siné | | -i
0 0

-V sind  cosé
v =l 0 0 Ol (6)

8 V cos§ sind 88
0 0 0

. . . 1T . . 1T
where ig=[is i)' ing=lir, Gl', Vg =[p,,.V, ] and vg

=[9dq»qu]" The generator terminal voltage is expressed in

polar coordinates; phase and magnitude. By making use of
the polar coordinates for the terminal voltages, it is possi-
ble to express the state equations of AVR in terms of the
bus voltage and the solutions of load-flow calculations in
the polar coordinate can then be directly utilized.

The overall state equations are obtained by transforming
ige in €q. (2) and v, in eq. (4) to i,, and v, respectively, as
in egs. (5) & (6) and eliminating u,, iy, u, and v,, in egs.
(1) & (3). Note that D, and D, in eq. (2) are zero. The
overall system equations are given as:

N N(A,+B,D,C) NB.C, x,
Plx.|7|B.c, +B,C /N4, +B,D/C) A, +B,C /NBC, |x,

NB, -
| B,c, B, |

where N=(I-B,D,, C;)" and C,, C,, C;, and D, are the
transformed matrices using eqns. (5) and (6). These state
equations have been implemented in the proposed HF dy-
namic stability program. This program can be used for SSR
analysis, controller design, and frequency response calcula-
tions. The flexibility of the modular construction allows the
easy addition and modification of a variety of excitation
systems and prime mover models, HVDC links, loads and
SVC.
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3. Machine Modeling and Program Flow

Formulating the network state equations is fully de-
scribed in [6] and therefore not reiterated here. The diverse
simple machine models for SSR study have also been re-
ported. However, for improved accuracy, it is necessary to
obtain more sophisticated linear machine models based on
the rigorous machine models such as those in PSS/E. In
view of program efficiency, it is very important to use the
rigorous machine models employed in transient stability
study without modification. Note that in the HF stability
study the dynamics of machine stators must be taken into
account.

3.1 HF Machine Modeling

For improved efficiency and flexibility, it is necessary
for the HF stability program to share the model data pre-
pared for transient stability studies as much as possible. In
other words, there is a definite benefit, in the HF stability
program, to employ the linear models developed for the LF
small-signal stability program as much as possible. The
proposed HF stability program shares the nonlinear model

data prepared for transient stability studies in PSS/E format.

The only additional data needed for the HF program is
mass and spring constants of the TG components. Further-
more, the models of various excitation systems and prime
mover models for LF small-signal stability studies are used
without modification. Thus, the efforts of preparing data
and developing the linear model are reduced significantly.

Fig. 1-(a) shows general equivalent circuits for d-axis
and q-axis flux linkage. Ideally, d-axis and g-axis flux link-
age paths are de-coupled. However, more sophisticated
generator models such as GENROU in PSS/E (shown in
Fig. 1-(b)) include the effects of saturation and coupling
between d-axis and g-axis. Though the dynamics of the sta-
tor windings are neglected in the LF stability studies, they
must be considered in the HF stability. This necessitates the
addition of two state equations including the speed voltage
and rate of change of flux terms to system equations as fol-
lows:

pv, =W, +ri, + O, +l//q000)0)3 (®)

PV, =, +r1i —0W, -y, 00, 9
where wz= 377.0 rad/s. These two linear equations repre-
sent the dynamics of the machine stator. In cases where the
HF classical machine model is used for representing the
infinite bus, only two linear equations associated with sta-
tor dynamics, eqs. (8) and (9), are considered.
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(b) Block diagram of round type machine model
Fig. 1 Block diagram of round type machine

3.2 Modeling of TG Torsional System

All TG torsional systems are comprised of multi-mass
shaft systems. The proposed HF stability program is de-
signed to accommodate up to 6-mass systems, as shown in
Fig. 2. Single mass representation used in the LF stability
study is also possible. The program can easily be modified
to accommodate more than 6 mass systems if necessary.
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Fig. 2 Turbine-Generator 6-mass shaft system

3.3 Computation Procedures

Fig. 3 shows the computational flow in the proposed HF
Stability Analysis program. The first step is to read the
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load flow and run the load flow calculations. The typical
load flow data includes bus data, generator data, trans-
former, and branch data. If a capacitor is installed, the cor-
responding data must also be provided.

After reading dynamic data, pre-calculations for the lin-
earization of the nonlinear HF models (or LF models) are

made at the “initializing” step using the results of load flow.

The dynamic equations of network and machines are then
formulated and interfaced. Finally, the eigenvalues, eigen-
vectors and partition factors are computed using the IMSL
Math/Library [10] for analysis of HF small-signal stability.

I Read Load—Flow Data ’

Calculation of Load
Flow

LF Small Signal Stability
[ Read Dynamic Data }- ——————— ]
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Fig. 3 Computational algorithm of HF eigenvalue program

In this program, the HF stability is of primary interest.
However, the LF stability studies can be presented in a uni-
fied way using this program simply by removing the dy-
namics in the HF stability, which are not necessary in the
LF stability. For example, the network dynamics and the
multi-mass shaft system in the HF stability are represented
by algebraic equations and the single mass lumped mass in
the LF stability, respectively.

Currently, the order of the system matrix in which this
software package can handle is about 500 at maximum be-
cause of the limitation in the IMSL. As more powerful
software for eigenvalue analysis becomes available, the
limitation on the size of the system matrix can be consid-
erably eliminated.

4. Applications

The IEEE first/second benchmark models (FBM/SBM)
for SSR study are used to test the integrity of the proposed

HF stability program. The infinite bus is modeled with the
HF classical machine model with a large inertia. In addi-
tion, the mechanical damping in the spring-mass system is
ignored in these studies.

4.1 IEEE FBM for SSR Study

Fig. 4 shows the IEEE FBM for the computer simulation
of SSR. This model has been widely used since 1977 for
studying the torsional oscillations, evaluating the perform-
ances of study techniques and investigating SSR counter-
measures. All the parameters are given in [3].

A xc XSYS
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Fig. 4 TEEE FBM for SSR study (X;=0.5 p.u.)

4.1.1 No-load Condition: P.=0.0 p.u.

The computed eigenvalues of the [EEE FBM using the
proposed HF stability program are shown in Table 1. It is
found by observing the eigenvectors that the first four domi-
nant modes with negative damping and mode 6 are associated
with the TG modes. The fifth mode is a system mode associ-
ated with the oscillation of the entire rotor against the power
system. The network modes (7 and 8) are associated with the
RLC network. The rest of the modes, from 9 to 12 inclusive,
are associated with the machine flux.

By comparing the real parts (decrement factors) of the
four TG modes with those in reference [4], the accuracy of
the proposed program is validated. They are almost identi-
cal, but there is a minor discrepancy in mode 1, which may
have resulted from the differences in either the modeling or
the eigenvalue computation routine used.

Table 1 The results of eigenvalues of IEEE FBM, V,=1.0
p-u., Pe=0.0 p.u., Xc=0.371 p.u.

Mode Real Imag.
No. /s) (adls) Hz Remarks
1 0.002(0.028) | =202.860 | 32286
2 0.025(0.028) | 160392 | 25.527 G
3 0.103 (0.11) 2127233 | 20250 | ool
4 0.048 (0.05) £99.809 15885 | 'Y
5 1279 +10.805 1.720
6 0.000 £298.176 | 47.456
7 4374 £619.035 | 98523 | Swor
8 3560 £134303 | 21375
Modes
9 25414 00 00
10 -23.002 0.0 0.0 Machine
11 -1.266 0.0 0.0 Modes
12 -0.948 0.0 0.0

) decrement factors Calculated from modal Mechanical Spring
Mass Model [4]
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Fig. 5 The trajectory of the real parts of eigenvalues of the
TG modes and the frequency of mode 8 versus
XX (no-load condition)

Figs. 5-(a) and 5-(b) show the trends of the real parts of
the TG modes and the frequency of network mode 8 as the
function of compensation ratio X/X;, respectively. The
peak in the negative damping of each TG mode occurs
when the frequency of the network mode (mode 8) shown
in Fig. 5-(b), passes the frequency of the corresponding TG
mode. This suggests that the line compensation with Xc
resulting in the frequency of the network mode near to that
of any TG mode should be avoided. As shown in Fig. 5-(b),
the frequency of mode 8 decreases gradually as the line
compensation increases.

Fig. 6 shows migration of mode 5 (system mode) and
mode 12 associated with the machine d-axis field time con-
stant. The damping of the system mode is improved as the
line compensation ratio increases. This observation is con-
sistent with that in the LF stability, as low frequency oscil-
lation problems are significant in the weak system where
the machine is connected through the high external imped-
ance. The machine mode is not affected significantly by the
line compensation.

0.7
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Fig. 6 The real parts of eigenvalues of mode 5 and mode
12 versus Xc/X, (no-load condition)

4.1.2 Generator Loading: P.=0.9 p.u.

Table 2 shows the eigenvalues computed at a higher
generator loading. The loading condition is: P.=0.9 p.u.,
803.16MW, PF=0.9 lagging, terminal voltage, V=1.0 p.u.,
and X=0.371 p.u. The effects of the loading on the TG
modes are different from mode to mode: mode 1 and 2 mi-
grate into the stable region, but mode 3 and 4 become un-
stable. Mode 6 is unchanged. Notice also that mode 12, as-
sociated with rotor field flux, becomes unstable.

The trajectory of the real parts of the eigenvalues of the
TG modes are plotted in Figs. 7 and 8 as a function of gen-
erator loading having a fixed 74% line compensation.
Mode 4, which has the lowest natural frequency among the
TG modes, 1s most vulnerable to an increase in the ma-
chine loading even though the frequency of mode 3, not
mode 4, is closest to the network mode (mode 8) at 21 Hz.
This suggests that an increase in generator loading may de-
stabilize the TG modes as the line compensation increases.

Table 2 V=1.0 p.u,, P.=0.9 p.u.,, PF=0.9 lagging, X=.371 p.u..

Mode Real Imag.

No. (L/s) (rad/s) Hz Remark
1 -0.030 +202.814 32.280
2 -0.032 +160.314 25525
3 0.130 +127.103 20.238 TG/System
4 0.168 +99.426 15.841 Modes
5 -1.172 +9.187 1462
6 0.000 +298.177 47456
7 -4.365 +619.030 98.522 Stator/ Net-
8 -3.663 +134.450 21.398 work Modes
9 -25.424 0.0 0.0

10 -23.069 0.0 0.0 Machine
11 -2.534 0.0 0.0 Modes
12 0.256 0.0 0.0

* No mechanical damping represented in this study

Since mode 12 is a non-oscillatory mode and closely re-
lated to the voltage control loop, it may affect the synchro-
nizing torque and lead to rotor angle instability. Actually,
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time domain simulation using EMTDC [11] shows that
when a three-phase fault is applied to the infinite bus for
0.12 seconds and then removed, loss of synchronism oc-
curs shortly after the angle oscillation converges near to the
steady state. In this case, the multi-mass system of the TG
set is replaced by a single mass system in order to elimi-
nate the effects of torsional interaction. By using the high-
response excitation system [12], such an instability prob-
lem may be prevented.
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Fig. 7 The real parts of eigenvalue of TG modes versus in-
creasing electric power, P.(p.u.), Xc=0.371 p.u.
(74% comp.)
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Fig. 8 The real parts of eigenvalue of Mode 5 and Mode 12
versus increasing electric power, P, (p.u.), X.=0.371
p-u. (74% comp.)

4.2 IEEE SBM System #1

Fig. 9 shows the IEEE SBM #1 where a single generator
(600MVA) is connected to the infinite bus through two
parallel lines, one of which is series compensated. This
system is designed for study of negative damping due to
self-excitation, which is calculated as a function of com-
pensation. Compared with the FBM, the SBM System #1 is
more practical with respect to the actual operation of a

power system. All system parameters are given in [4].

XSYS

Fig. 9 IEEE SBM-System #1

4.2.1 No-load Case: P.=0.0 p.u.

Table 3 shows the computed eigenvalues for the SBM
System #1 with no-load and X=0.044 p.u. The first three
modes (24 Hz, 32 Hz, and 51 Hz modes) are TG modes
with negative dampings. Since the other modes are similar
to those of the FBM, they are not described here in detail.

In order to validate the program, the real parts of modes
1 and 2 computed as a function of compensation in line #1
are listed in Table 4 and compared with those in [4]. In Ta-
ble 4, “Proposed” and “IEEE” represent the real parts

Table 3 Eigenvalues of the SBM System # 1 with Xc=
0.044 p.u. (55%), Vi=1.0 p.u., P.=0.0 p.u.

Mode Real Imag.

No. (1/s) (rad/gs) Hz Remarks
1 0.383 £155.239 24707
2 0.005 +203.550 32396 | TG/System
3 0.001 +321.199 51.120 Modes
4 1318 £9.632 1.533
5 -15.620 +605.451 98523 | o e
6 21.740 +376.862 60.000
7 -15.382 +148.671 21375 | WorkModes
3 27943 0.0 0.0
9 -18.799 0.0 0.0 Machine
10 -1.224 0.0 0.0 Modes
1 0.645 0.0 0.0

* No mechanical damping represented in this study.

Table 4 Comparison of the real parts of modes 1 and 2 in
the SBM System # 1, computed by the proposed
program and reference [4]

Comp. Mode 1 (24 Hz) Mode 2 (32 Hz)
(%) Proposed IEEE Proposed IEEE
0 -0.001 - 0.001 -
20 0.006 0.006 0.006 0.006
25 0.011 0.011 0.016 0.016
30 0.021 0.021 0.040 0.040
35 0.042 0.042 0.037 0.037
40 0.089 0.089 0.018 0.018
45 0.205 0.205 0.010 0.010
50 0.403 0.402 0.007 0.007
55 0.383 0.383 0.005 0.005
60 0.218 0.218 0.004 0.004
65 0.124 0.124 0.003 0.003
70 0.078 0.078 0.003 0.003
80 0.039 - 0.002 -
85 0.030 - 0.002 -
90 0.023 - 0.002 -

* No mechanical damping represented in this study.
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computed by the proposed program and given in [4], re-
spectively. The differences between the two results are
negligible. The maximum negative damping occurs near
the 50% compensation of the transmission line.

4.2.2 Generator Loading: P.=0.9 p.u.
With the generator output of P,=0.9 p.u., the eigenvalues
of the SBM System #1 are shown in Table 5.

Table 5 Eigenvalues of the SBM System # 1 with Xc=
0.044p.u. (55%), Vi=1.0 p.u., P,=0.90 p.u., PF=0.9

sional modes with negative dampings. The frequencies of
both mode 1 and mode 2 are approximately 24.8 Hz and
very close each other. Mode 6 (1.826 Hz) and mode 7
(1.105 Hz) are the system modes with positive damping.
Modes 8 and 10 are the network modes associated with
RLC elements and mode 9 is the machine stator mode as-
sociated with the dynamics of the machine stators. The rest
of the modes are associated with machine flux equations.

In Table 7, the real parts of modes 1 and 2 computed as a
function of line compensation are compared with those in
[4]. The differences between the two results are negligible.
This proves again the validity of the proposed HF stability
program.

Table 6 Eigenvalues of the SBM System # 2 with

Xe= 0.0338 pu (65% Comp.), V,=1.0, P.=0.0

lagging
Mode Real Imag.

No. (1/5) (rad/s) Hz Remarks
1 0.296 +154.993 24.668
2 0.001 +203.527 32.392 TG /System
3 0.000 +321.197 51.120 Modes
4 -1.107 +7.773 1.237
5 -15.618 +605.449 96.360 Stator/
6 -21.737 +376.866 59.980 Network
7 -15.299 +148.731 23.671 Modes
8 -27.790 0.0 0.0
9 -19.143 0.0 0.0 Machine
10 -2.236 0.0 0.0 Modes
11 0.142 0.0 0.0

* No mechanical damping represented in this study.

An increase in generator loading produces, to some ex-
tent, the same effect as an increase in the line compensa-
tion starting from the no-load condition: the negative
damping in mode 1 is slightly reduced. Notice that mode
11 is unstable, which suggests that a non-oscillatory rotor
angle instability may have been caused. The above obser-
vations are similar to those in the FBM case.

4.3 IEEE SBM System #2

The IEEE SBM System #2 shown in Fig. 10 consists of
two generators (Gen. #1 = 600MVA, Gen. #2 = 700MVA),
which are connected to an infinite bus through a single
series compensated transmission line. This system is well
suited for studying the parallel resonance and interactions
between turbine-generators with a common mode.

[ = 12 E -

| 2

Fig. 10 IEEE SBM -System #2

4.3.1 No-load Condition: P.=0.0 p.u.
The computed eigenvalues of this system with the no-
load and X=0.0338 are listed in Table 6. There are 4 tor-

Mode Real Imag.

No. (1/s) (rad/gs) Hz Remarks
1 0.430 +155.785 24.794
2 0.092 +155.641 24.771
3 0.003 +203.559 32.397 TG/
4 0.000 +282.900 45.025 system
5 0.000 +321.200 51.121 Modes
6 -2.364 +11.473 1.826
7 -0.894 +6.940 1.105
8 -12.091 +586.347 93.320 Stator/
9 -6.319 +376.886 59.983 Network
10 -11.362 +167.019 26.582 Modes
11 -29.190 0.0 0.0
12 -27.569 0.0 0.0
13 -27.414 0.0 0.0
14 -19.131 0.0 0.0 Machine
15 -1.710 0.0 0.0 Modes
16 -1.224 0.0 0.0
17 -0.970 0.0 0.0
18 -0.533 0.0 0.0

* No mechanical damping represented in this study

Table 7 Comparison of the real parts of modes 1 and 2 in
the SBM System # 2, computed by the proposed

program and reference [4]

Comp. Mode 1 (24.79 Hz) Mode 2 (24.77Hz)
(%) Proposed IEEE[4] Proposed IEEE[4]
0 0.003 - -0.041 -
20 0.010 - -0.039 -
40 0.031 - -0.029 -
50 0.060 0.063 -0.006 -0.007
55 0.088 0.091 0.028 0.0259
60 0.127 0.133 0.114 0.1106
65 0.430 0.440 0.092 0.0863
70 0.938 0.951 0.022 0.0187
75 1.011 1.030 -0.005 -0.0073
80 0.607 0.622 -0.019 -0.0201
85 0.305 - -0.026 -
90 0.166 0.1706 -0.031 -0.0316

* No mechanical damping represented in this study

4.3.2 Generator Loading: P.=0.9 p.u.
With the generator output of P;=540MW and Pg,=
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630MW, the computed eigenvalues of this system are listed
in Table 8. All terminal voltages, including the infinite bus,
are assumed to be 1.0 p.u.. The results are very similar to
those of the no-load case except that damping and fre-
quency of mode 7 (system mode) are significantly en-
hanced and reduced, respectively.

Table 8 Eigenvalues of the SBM System #2 with
Xc=0.0338 p.u. (65%), P.=0.9 p.u., V,=1.0

Mode Real Imag.
No. (1/s) (rad/s) Hz Remarks
1 0.549 £155.646 24204
2 0.155 +155.691 24779
3 0.001 £203.533 32393
4 0.017 +281.459 44.796 TGNﬁgzt:m
5 0.000 +321.198 51.120
6 -1.450 £9.333 1.485
7 -6.040 +1.399 0.223
) 12119 +582.572 93.320 Stator/
9 1.054 £376.465 60.394 Network
10 11.201 +173.018 27537 Modes
11,12 28.644 +0.098 0.016
13 -26.825 0.0 0.0
14 -19.816 0.0 0.0 .
15 8.324 0.0 0.0 I‘ﬁ;g:e
16 -1.936 0.0 0.0
17 -1.059 0.0 0.0
18 0.131 0.0 0.0

* No mechanical damping represented in this study

5. Conclusion

This paper described a novel yet efficient approach for
the construction of the state matrix of multi-machine power
systems for HF stability studies. By simply transforming
the output equations of both machine and network state
matrix equations into the other reference frame, a complete
set of the state matrix equations is derived. The flexibility
and modularity in constructing the state matrix allows for
easy modeling of a wide variety of power system compo-
nents, as well as the addition/modification of component
models. The proposed HF stability program has also been
tested and validated against the IEEE First/Second SSR
benchmark models.

This universal SSR small signal stability program pro-
vides a flexible tool for systematic analyses of SSR small-
signal stability impacts of both conventional devices such
as generation systems and novel devices such as power
electronic apparatus and their controllers.
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