• Title/Summary/Keyword: sputter-deposition

Search Result 341, Processing Time 0.022 seconds

A study of CrC Sputtering as an Alternative Method for Cr Electroplating (전해 크롬도금 대체용으로서의 CrC 스퍼터링에 관한 연구)

  • Im, Jong-Min;Choe, Gyun-Seok;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.82-88
    • /
    • 2002
  • Chromium carbide films were deposited on high speed steels using a Cr_3C_2$ target by magnetron sputtering. Effects of the deposition parameters (power, Ar pressure and substrate temperature) on deposition rates and surface roughnesses of the films were investigated. The morphologies of those films were characterized by scanning electron microscopy and atomic force microscopy. The grain size of the samples deposited using dc-power is larger than that using equivalent rf-power. The hardness of the sample increases with increasing rf-power, whereas the elastic modulus nearly does not change with rf-power. The optimum sputter deposition conditions for chromium carbide on high speed steels in the corrosion resistance aspect were found to be the rf-power with small roughness.

A Study on the Pd-Ni Alloy Hydrogen Membrane Using the Sputter Deposition (스퍼터 증착 방식으로 제조된 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Park Jeong-Won;Kim Sang-Ho;Park Jong-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.243-248
    • /
    • 2004
  • A palladium-nikel(Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support formed with nickel powder. Plasma surface treatment process is introduced as pre-treatment process instead of HCI activation. Pd coating layer was prepared by dc magnetron sputtering deposition after $H_2$ plasma surface treatment. Palladium-nickel alloy composite layer had a fairly uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature of 773 K and pressure of 2.2psi. The hydrogen permeance was 6 ml/minㆍ$\textrm{cm}^2$ㆍatm and the selectivity was 120 for hydrogen/nitrogen($H_2$/$N_2$) mixing gases at 773 K.

SILICON DIOXIDE FILMS FOR INTERMETAL DIELECTRIC APPLICATIONS DEPOSITED BY AN ECR HIGH DENSITY PLASMA SYSTEM

  • Denison, D.R.;Harshbarger, W.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.130-137
    • /
    • 1995
  • Deopsition of thermal quality SiO2 using a high density plasma ECR CVD process has been demonstrated to give void and seam free gap fill of high aspect ratio metallization structures with a simple oxygen-silane chemistry. This is achieved by continuous sputter etching of the film during the deposition process. A two-step process is utilized to deposit a composite layer for higher manufacturing efficiency. The first step, which has a deposition rate of approximately 0.5 $\mu$m/min., is used to provide complete gap fill between the metal lines. The second step, which has a deposition rate of up to 1.5 $\mu$m/min., is used to deposit a total thickness of 2.0$\mu$m for the intermetal dielectric film. The topography of this composite film is very compatible with subsequent chemicl mechanical polishing(CMP) planarization processing.

  • PDF

Deposition and XPS Study of Pb, Zr, and Ti Films

  • Choi, Sujin;Park, Juyun;Jeong, Eunkang;Kim, Beob Jun;Son, Seo Yoon;Lee, Jeong Min;Lee, Jin Seong;Jo, Hee Jin;Park, Jihun;Kang, Yong-Cheol
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.183-187
    • /
    • 2014
  • Lead zirconate titanate (PZT) is significant material in electrical and optical devices for their ferroelectric, piezoelectric and dielectric properties. In this research, PZT films were fabricated by reactive RF co-sputtering method using Pb, Zr, and Ti targets. From XPS study, lead, zirconium, and titanium are successfully deposited on Si(100) substrate. Thickness of PZT films was measured with a surface profiler and the thickness was decreased as the oxygen gas ratio increased in the sputter gas.

Comparison of Electrical Properties between Sputter Deposited Au and Cu Schottky Contacts to n-type Ge

  • Kim, Hogyoung;Kim, Min Kyung;Kim, Yeon Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.556-560
    • /
    • 2016
  • Using current-voltage (I-V) and capacitance-voltage (C-V) measurements, the electrical properties of Au and Cu Schottky contacts to n-Ge were comparatively investigated. Lower values of barrier height, ideality factor and series resistance were obtained for the Au contact as compared to the Cu contact. The values of capacitance showed strong dependence on the bias voltage and the frequency. The presence of an inversion layer at the interface might reduce the intercept voltage at the voltage axis, lowering the barrier height for C-V measurements, especially at lower frequencies. In addition, a higher interface state density was observed for the Au contact. The generation of sputter deposition-induced defects might occur more severely for the Au contact; these defects affected both the I-V and C-V characteristics.

Enhancement of Performance of Dye-Sensitized Solar Cell by Reducing the Interface Resistance (계면저항 감소를 통한 염료감응형 태양전지 성능 향상)

  • Kim, Hwi-Dong;Kim, Ki-Hoon;Ahn, Ji-Young;Kim, Soo-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.360-363
    • /
    • 2009
  • In order to improve the overall power conversion efficiency, it is very important to reduce the interface resistance of dye-sensitized solar cells (DSSCs). In this approach, tiny $TiO_2$ nanoparticles with the primary size of 10~20nm were synthesized and deposited between FTO glass and preformed $TiO_2$ layer by $TiOCl_2$ treatment, and also Pt catalysts were deposited on the counter electrode by both ion-sputter and thermal deposition to reduce the electrolyte-counter electrode interface resistance. The influence of these processes on the performace of DSSCs were discussed in terms of fill factor, short circuit current, and conversion efficiency.

  • PDF

Split sputter mode: a novel sputtering method for flat-panel display manufacturing

  • Pieralisi, Fabio;Hanika, Markus;Scheer, Evelyn;Bender, Marcus
    • Journal of Information Display
    • /
    • v.12 no.2
    • /
    • pp.89-92
    • /
    • 2011
  • Advanced static DC magnetron sputtering methods based on the magnet wobbling technique were investigated to achieve highly uniform and homogeneous metallization layers. The novel split sputter mode (SSM) method, wherein the deposition process is divided into two distinct steps, enables the AKT rotary cathode technology to provide excellent layer properties, while keeping a high production throughput. The effectiveness of theSSMtechnique was demonstrated through copper-coated large-area substrates.

Preparation and PTC Properties of Thin Films BaTiO$_3$ System (BaTiO$_3$계 세라믹 박막의 제조와 PTC특성)

  • 박춘배;송민옹;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.17-20
    • /
    • 1994
  • PTCRl(positive temperature coefficient of resistivity) thermistors in the thin file BaTiO$_3$ system were deposited by radio frequency (13.56 MHz) and dc radio frequency (13.56MHz) and dc magnerton sputter equipment. R-T(resistivity -temperature) properties was investigated as a function of substrate and the temperature variation. The specimens make a comperison between the thin films and the bulk in the resistivity variation. Substrate temperature. deposition time. and forward power are deposited at the 400$^{\circ}C$, 10 hours, and 210 watt. respectively. The aim of this work is to obtain lower than bulk specimen resistivity in thin films BaTiO$_3$ system thermistor by RF/DC magnetron sputter equipment.

  • PDF

Resistivity Variation of Nickel Oxide by Substrate Heating in RF Sputter for Microbolometer

  • Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.348-352
    • /
    • 2015
  • Thin nickel oxide films formed on uncooled and cooled $SiO_2/Si$ substrates using a radio frequency (RF) magnetron sputter powered by 200 W in a mixed atmosphere of argon and oxygen. Grazing-incidence X-ray diffraction and field emission scanning electron microscopy are used for the structural analysis of nickel oxide films. The electrical conductivity required for better bolometric performance is estimated by means of a four-point probe system. Columnar and (200) preferred orientations are discovered in both films regardless of substrate cooling. Electric resistivity, however, is greatly influenced by the substrate cooling. Oxygen partial pressure increase during the nickel oxide deposition leads to a rapid decrease in resistivity, and the resistivity is higher in the cooled nickel oxide samples. Even when small microstructure variations are applied, lower resistivity in favor of low noise performance is acquired in the uncooled samples.

ATO Thin Films Prepared by Reactive lout Beam Sputtering (반응성 이온빔 스퍼터링법에 의해 제조된 ATO박막)

  • 구창영;김경중;김광호;이희영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.361-364
    • /
    • 2000
  • Antimony doped tin oxide (ATO) thin films were deposited at room temperature by reactive ion-beam sputter deposition (IBSD) technique in oxidizing atmosphere utilizing Sb and Sn metal targets. Effect of Sb doping concentration, film thickness and heat treatment on electrical and optical properties was investigated. The thickness of as-deposited films was controlled approximately to 1500 $\AA$ or 2000$\AA$, and Sb concentration to 10.8 and 14.9 wt%, as determined by SEM and XPS analyses. Heat treatment was performed at the temperature from 40$0^{\circ}C$ to 80$0^{\circ}C$ in flowing $O_2$or forming gas. The resulting ATO films showed widely changing electrical resistivity and optical transmittance values in the visible spectrum depending on the composition, thickness and firing condition.

  • PDF