Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.10.556

Comparison of Electrical Properties between Sputter Deposited Au and Cu Schottky Contacts to n-type Ge  

Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology)
Kim, Min Kyung (Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology)
Kim, Yeon Jin (Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.26, no.10, 2016 , pp. 556-560 More about this Journal
Abstract
Using current-voltage (I-V) and capacitance-voltage (C-V) measurements, the electrical properties of Au and Cu Schottky contacts to n-Ge were comparatively investigated. Lower values of barrier height, ideality factor and series resistance were obtained for the Au contact as compared to the Cu contact. The values of capacitance showed strong dependence on the bias voltage and the frequency. The presence of an inversion layer at the interface might reduce the intercept voltage at the voltage axis, lowering the barrier height for C-V measurements, especially at lower frequencies. In addition, a higher interface state density was observed for the Au contact. The generation of sputter deposition-induced defects might occur more severely for the Au contact; these defects affected both the I-V and C-V characteristics.
Keywords
barrier height; series resistance; interface state;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Shang, M. Frank, E. Gusev, J. Chu, S. Bedell, K. Guarini and M. Jeong, IBM J. Res. Dev., 50, 377 (2006).   DOI
2 A. Dimoulas, P. Tsipas, A. Sotiropoulos and E. Evangelou, Appl. Phys. Lett., 89, 252110 (2006).   DOI
3 D. Kuzum, K. Martens, T. Krishnamohan and K. Saraswat, Appl. Phys. Lett., 95, 252101 (2009).   DOI
4 T. Nishimura, K. Kita and A. Toriumi, Appl. Phys. Lett., 91, 123123 (2007).   DOI
5 Y. Zhou, M. Ogawa, M. Bao, W. Han, R. Kawakami and K. Wang, Appl. Phys. Lett., 94, 242104 (2009).   DOI
6 T. Nishimura, K. Kita and A. Toriumi, Appl. Phys. Exp., 1, 051406 (2008).   DOI
7 B. Tsui and M. Kao, Appl. Phys. Lett., 103, 032104 (2013).   DOI
8 F. Auret, W. Meyer, S. Coelho and M. Hayes, Appl. Phys. Lett., 88, 242110 (2006).   DOI
9 E. Simoen, K. Opsomer, C. Claeys, K. Maex, C. Detavernier, R. Meirhaeghe and P. Clauws, J. Electrochem. Soc., 154, H857 (2007).   DOI
10 S. Coelho, F. Auret, P. Rensburg and J. Nel, J. Appl. Phys., 114, 173708 (2013).   DOI
11 F. Auret, S. Coelho, P. Rensburg, C. Nyamhere and W. Meyer, Mater. Sci. Semicond. Process., 11, 348 (2008).   DOI
12 H. Michaelson, J. Appl. Phys., 48, 4729 (1977).   DOI
13 S. M. Sze, Physics of Semiconductor Devices, 2nd Ed., Wiley, New York (1981).
14 J. Sullivan, R. Tung, M. Pinto and W. Graham, J. Appl. Phys., 70, 7403 (1991).   DOI
15 S. Cheung and N. Cheung, Appl. Phys. Lett., 49, 85 (1986).   DOI
16 S. Witczak, J. Suehle and M. Gaitan, Solid State Electron., 35, 345 (1992).   DOI
17 P. Chattopadhyay and B. Raychaudhuri, Solid State Electron., 36, 605 (1993).   DOI
18 M. Green and J. Shewchun, Solid State Electron., 16, 1141 (1973).   DOI
19 W. Monch, J. Vac. Sci. Technol. B, 17, 1867 (1999).   DOI
20 A. Chawanda, J. Nel, F. Auret, W. Mtangi, C. Nyamhere, M. Diale and L. Leach, J. Korean Phys. Soc., 57, 1970 (2010).   DOI
21 H. Yao, D. Chi, R. Li, S. Lee and D. Kwong, Appl. Phys. Lett., 89, 242117 (2006).   DOI
22 F. Auret, S. Coelho, W. Meyer, C. Nyamhere, M. Hayes and J. Nel, J. Electron. Mater., 36, 1604 (2007).   DOI
23 S. Chattopadhyay, K. Bera, K. Ray, K. Bose, D. Dentel and L. Kubler, J. Mat. Sci. Mater. Electron., 9, 403 (1998).
24 M. Mamor, J. Phys. Condens. Matter., 21, 335802 (2009).   DOI
25 B. Xue, H. Chang, B. Sun, S. Wang and H. Liu, Chin. Phys. Lett., 29, 046801 (2012).   DOI
26 S. Sun, Y. Sun, Z. Liu, D. Lee, S. Peterson and P. Pianetta, Appl. Phys. Lett., 88, 021903 (2006).   DOI
27 X. Li, A. Li, X. Liu, Y. Gong, X. Chen, H. Li and D. Wu, Appl. Surf. Sci., 257, 4589 (2011).   DOI