• Title/Summary/Keyword: spray pyrolysis process

Search Result 110, Processing Time 0.023 seconds

(Ba,Sr)$_2SiO_4:Eu^{2+}$ Phosphor Particles by Spray Pyrolysis Process

  • Kang, Hee-Sang;Kang, Yun-Chan;Park, Hee-Dong;Shul, Yong-Gun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.811-814
    • /
    • 2002
  • $(Ba,Sr)_2SiO_4:Eu^{2+}$ phosphor particles with high brightness were prepared by spray pyrolysis. The changes in the photoluminescence intensity and morphology of $(Ba,Sr)_2SiO_4:Eu^{2+}$ were investigated by changing the posttreatment temperature and the concentration of dopant. The prepared $(Ba,Sr)_2SiO_4:Eu^{2+}$ particles has a dense structure, but irregular shape after the posttreatment. When they were excited by the ultraviolet light of 410 nm, a broad emission band with a peak at 508 nm was observed. The photoluminescence intensity of the prepared $(Ba,Sr)_2SiO_4:Eu^{2+}$ particles was enhanced by increasing the posttreatment temperature up to 1300 $^{\circ}C$ and further improved by adding several rear-earth codopants. The $(Ba,Sr)_2SiO_4:Eu^{2+}$ particles prepared by spray pyrolysis had a good excitation spectrum in the wavelength longer than 350 nm. Therefore, it was concluded that the $(Ba,Sr)_2SiO_4:Eu^{2+}$ prepared by spray pyrolysis is a good green-emitting phosphor for LED application.

  • PDF

Application of Spray Pyrolysis Process for Production of Ultra Pure and Fine Powder. (고순도 초미립 분체제조를 위한 분무열분해법의 응용)

  • Yu, Jae-Keun;Park, Hee-Beom;Park, Joo-Ill;Han, Jung-Soo;Han, Jin-A;Nam, Yung-Hyeon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.39-41
    • /
    • 2000
  • Newly modified spray Pyrolysis system was developed to Produce ultra Pure and fine Powder by spray Pyrolysis Process. In this system, raw material solution was effectively atomized and sprayed into the reaction furnace. Also, thermal decomposition process fully completed in the three zone reaction furnace, and produced powder was effectively collected. A technology to reduce impurities in complex acid solution below 20ppm was also developed. The characteristics of produced powder were studied by changing the reaction conditions such as reaction temperature, the injection velocity of the solution and air, nozzle tip size and concentration of solution. The morphology of powder had spherical shape under the most experimental conditions, and the composition and the particle size distribution were almost uniform. Under the most experimental conditions average particle size of most produced powder was below 100nm.

Synthesis of Spherical Fine $PbTiO_3$ Particles by the Spray Pyrolysis Method Using Ultrasonic Vibrator (초음파 분무 열분해법에 의한 구형의 $PbTiO_3$ 미립자 제조)

  • 이서영;이동주;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.107-116
    • /
    • 1991
  • Fine $PbTiO_3$ Particles were synthesized from the $Pb(NO_3)_2$and $TiO(NO_3)_2$ solution by the spray pyrolysis method using the ultrasonic vibrator as a mist generator. The obtained particles were characterized. The mechanisms of particle formation were discussed in comparison with those if other particles, such as $BaTiO_3$, $ZnO_2$, ZnO ....., in the same spray pyrolysis process.

  • PDF

Effect of annealing on the magnetic behavior and microstructures of spherical NiZn ferrite particle prepared by ultrasonic spray pyrolysis

  • Nam, Joong-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • The spherical NiZn ferrite particles were prepared by ultrasonic spray pyrolysis with mixed solution of aqueous metal nitrates. The NiZn ferrite particle was observed with nano-sized primary particles of about 10 nm or less before annealing which represented as paramagnetic behavior measured at 77 K and room temperature. The typical abnormal growth of primary particles like polyhedral primary particles was observed by annealing at 1273 K with Zn-concentration dependency. The XRD patterns showed good crystallinity of NiZn ferrite powder after annealing. In annealing process, the intra-particle sintering phenomenon was observed and the spherical particle morphology was collapsed at 1673 K. The saturation magnetization of NiZn ferrite powder for each annealing temperature was decreased with measuring temperature of $77{\sim}$300K.

The properties of ZnO/MgO films prepared by ultrasonic spray pyrolysis (초음파분무법으로 제조한 ZnO/MgO막의 특성)

  • Choi, Mu-Hee;Ma, Tae-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.362-367
    • /
    • 2005
  • ZnO films were deposited on MgO substrates (ZnO/MgO) by ultrasonic spray pyrolysis. Substrate temperature varied from $250^{\circ}C$ to $350^{\circ}C$. The crystallographic properties and surface morphologies of the ZnO/MgO films were studied by X-ray diffraction and scanning electron microscopy. The properties of photoluminescence (PL) for the films were investigated by dependence of PL spectra on the substrate temperature and the annealing temperature. The ZnO/MgO films prepared at $350^{\circ}C$ showed the strongest Ultraviolet light emission peak at 18 K and 300 K among the films in this study. The annealing process increases the visible light emission, which is due to the increased oxygen vacancies.

Synthesis and Optical Property of a TiOF2 Powder via an Ultrasonic Spray Pyrolysis Process (초음파 분무 열분해 공정을 이용한 TiOF2 분말의 합성과 광학적 성질)

  • Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.307-310
    • /
    • 2016
  • $TiOF_2$, which has remarkable electrochemical and optical properties, is used in various applications such as Li-ion batteries, electrochemical displays, and photocatalysts. In addition, it is possible to utilize the template which is allowed to synthesize fluorine doped $TiO_2$ powders with hollow or faceted structures. However, common synthesis methods of $TiOF_2$ powders have some disadvantages such as the use of expensive and harmful precursors and batchtype processes with a limited production scale. In this study, we report a synthetic route for preparing $TiOF_2$ powders by using an inexpensive and harmless precursor and a continuous ultrasonic spray pyrolysis process under a controlled atmosphere to address the aforementioned problems. The synthesized powder has an average size of $1{\mu}m$, a spherical shape, a pure $TiOF_2$ phase, and exhibits a band-gap energy of 3.2 eV.

Synthesis and Optical Property of BaTiO3 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process (염 보조 초음파 분무 열분해 공정을 이용한 BaTiO3 나노입자의 합성과 광학적 성질)

  • Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate ($BaTiO_3$) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for $BaTiO_3$ nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing $BaTiO_3$ nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of $BaTiO_3$ nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.

Synthesis and Optical Property of GaN Powder Using an Ultrasonic Spray Pyrolysis Process and Subsequent Nitridation Treatment (초음파 분무 열분해 공정과 질화처리를 이용한 GaN 분말의 합성과 광학적 성질)

  • Ji, Myeong-Jun;Yoo, Jae-Hyun;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.482-486
    • /
    • 2018
  • Despite numerous advances in the preparation and use of GaN, and many leading-edge applications in lighting technologies, the preparation of high-quality GaN powder remains a challenge. Ammonolytic preparations of polycrystalline GaN have been studied using various precursors, but all were time-consuming and required high temperatures. In this study, an efficient and low-temperature method to synthesize high-purity hexagonal GaN powder is developed using sub-micron $Ga_2O_3$ powder as a starting material. The sub-micron $Ga_2O_3$ powder was prepared by an ultrasonic spray pyrolysis process. The GaN powder is synthesized from the sub-micron $Ga_2O_3$ powder through a nitridation treatment in an $NH_3$ flow at $800^{\circ}C$. The characteristics of the synthesized powder are systematically examined by X-ray diffraction, scanning and transmission electron microscopy, and UV-vis spectrophotometer.

Up-conversion Luminescence Characterization of CeO2:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Jung, Kyeong Youl;Min, Byeong Ho;Kim, Dae Sung;Choi, Byung-Ki
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.248-255
    • /
    • 2019
  • Spherical $CeO_2:Ho^{3+}/Yb^{3+}$ particles were synthesized using spray pyrolysis, and the upconversion (UC) properties were investigated with changing the preparation conditions and the infrared pumping power. The resulting particles had a size of about $1{\mu}m$ and hollow structure. The prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles exhibited intense green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$ and showed weak red or near-IR peaks. In terms of achieving the highest UC emission, the optimal concentrations of $Ho^{3+}$ and $Yb^{3+}$ were 0.3% and 2.0%, respectively. The UC emission intensity of prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles had a linear relationship with crystallite size and concentration quenching was caused by dipole-dipole interaction between the same ions. Based on the dependency of UC emission on the pumping power, the observed green upconversion was achieved through a typical two-photon process and concluded that the main energy transfer from $Yb^{3+}$ to $Ho^{3+}$ was involved in the ground-state adsorption (GSA) process.

Effect of Nozzle Tip Size on the Fabrication of Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Kim, Donghee;Yu, Jaekeun
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.489-494
    • /
    • 2013
  • In this study, by using nickel chloride solution as a raw material, a nano-sized nickel oxide powder with an average particle size below 50 nm was produced by spray pyrolysis reaction. A spray pyrolysis system was specially designed and built for this study. The influence of nozzle tip size on the properties of the produced powder was examined. When the nozzle tip size was 1 mm, the particle size distribution was more uniform than when other nozzle tip sizes were used and the average particle size of the powder was about 15 nm. When the nozzle tip size increases to 2 mm, the average particle size increases to roughly 20 nm, and the particle size distribution becomes more uneven. When the tip size increases to 3 mm, particles with an average size of 25 nm and equal to or less than 10 nm coexist and the particle size distribution becomes much more uneven. When the tip size increases to 5 mm, large particles with average size of 50 nm partially exist, mostly consisting of minute particles with average sizes in the range of 15~25 nm. When the tip size increases from 1 mm to 2 mm, the XRD peak intensities greatly increase while the specific surface area decreases. When the tip size increases to 3 mm, the XRD peak intensities decrease while the specific surface area increases. When the tip size increases to 5 mm, the XRD peak intensities increase again while the specific surface area decreases.