DOI QR코드

DOI QR Code

Up-conversion Luminescence Characterization of CeO2:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University) ;
  • Min, Byeong Ho (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Dae Sung (Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Choi, Byung-Ki (CQV Co., Ltd.)
  • Received : 2019.01.26
  • Accepted : 2019.02.28
  • Published : 2019.06.25

Abstract

Spherical $CeO_2:Ho^{3+}/Yb^{3+}$ particles were synthesized using spray pyrolysis, and the upconversion (UC) properties were investigated with changing the preparation conditions and the infrared pumping power. The resulting particles had a size of about $1{\mu}m$ and hollow structure. The prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles exhibited intense green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$ and showed weak red or near-IR peaks. In terms of achieving the highest UC emission, the optimal concentrations of $Ho^{3+}$ and $Yb^{3+}$ were 0.3% and 2.0%, respectively. The UC emission intensity of prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles had a linear relationship with crystallite size and concentration quenching was caused by dipole-dipole interaction between the same ions. Based on the dependency of UC emission on the pumping power, the observed green upconversion was achieved through a typical two-photon process and concluded that the main energy transfer from $Yb^{3+}$ to $Ho^{3+}$ was involved in the ground-state adsorption (GSA) process.

Keywords

KGHHD@_2019_v3n3_248_f0001.png 이미지

FIG. 1. (a) Emission spectra measured under the excitation of 980 nm IR laser for CeO2:Ho3+ and CeO2:Ho3+/Yb3+ particles prepared by spray pyrolysis and (b) energy-level diagram for Ho3+ and Yb3+ ions.

KGHHD@_2019_v3n3_248_f0002.png 이미지

FIG. 3. SEM photos of CeO2:Ho3+/Yb3+ powder prepared by spray pyrolysis: (a) as-prepared, (b) 900℃, (c) 1000℃, (d) 1100℃ and (e) 1200℃. (f) Particle formation mechanism in spray pyrolysis.

KGHHD@_2019_v3n3_248_f0003.png 이미지

FIG. 4. Concentration effect of Ho3+ and Yb3+ on the upconversion properties of Ce1-x-yO2:xHo3+/yYb3+: Emission spectra (a and b) and three-dimensional plot of the green emission intensity (c) while changing the amount of Yb3+ and Ho3+ ions. All samples are calcined at 1200℃.

KGHHD@_2019_v3n3_248_f0004.png 이미지

FIG. 5. Linear plots between of (a) ln(I/x or I/y) against ln(x or y) and (b) ln(I/(x+y)) versus ln(x+y) for Ce1-x-yO2:xHo3+/yYb3+.

KGHHD@_2019_v3n3_248_f0005.png 이미지

FIG. 6. (a) Upconversion emission spectra at different pumping power and (b) logarithmic dependence of green peak intensity as a function of pumping power for CeO2:Hox3+/Yby3+ (x = 0.003, y = 0.02). Changes in the n value as a function of (c) Yb3+mol%, (d) Ho3+ mol% and (e) Yb3+/Ho3+ mole ratio.

References

  1. P. Kumar, K. Nagpal, and B. K. Gupta, "Unclonable security codes designed from multicolor luminescent lanthanide-doped $Y_2O_3$ nanorods for anticounterfeiting," ACS Appl. Mater. Interfaces 9, 14301-14308 (2017). https://doi.org/10.1021/acsami.7b03353
  2. K. Y. Jung, J. C. Lee, D. S. Kim, B.-K. Choi, and W.-J. Kang, "Co-doping effect of monovalent alkali metals on optical properties of $CeO_2$:Eu nanophosphor prepared by spray pyrolysis and application for preparing pearlescent pigments with red emission," J. Lumin. 192, 1313-1321 (2017). https://doi.org/10.1016/j.jlumin.2017.09.017
  3. P. Kumar, S. Singh, and B. K. Gupta, "Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications," Nanoscale 8, 14297-14340 (2016). https://doi.org/10.1039/C5NR06965C
  4. J. Andres, R. D. Hersch, J. E. Moser, and A. S. Chauvin, "A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks," Adv. Funct. Mater. 24, 5029-5036 (2014). https://doi.org/10.1002/adfm.201400298
  5. Y. Liu, K. Ai, and L. Lu, "Designing lanthanide-doped nanocrystals with both up-and down-conversion luminescence for anti-counterfeiting," Nanoscale 3, 4804-4810 (2011). https://doi.org/10.1039/c1nr10752f
  6. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, "Upconversion nanoparticles: design, nanochemistry, and applications in theranostics," Chem. Rev. 114, 5161-5214 (2014). https://doi.org/10.1021/cr400425h
  7. J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, "Upconversion luminescent materials: advances and applications," Chem. Rev. 115, 395-465 (2015). https://doi.org/10.1021/cr400478f
  8. H. Suo, C. Guo, Z. Yang, S. Zhou, C. Duan, and M. Yin, "Thermometric and optical heating bi-functional properties of upconversion phosphor $Ba_5Gd_8Zn_4O_{21}:Yb^{3+}/Tm^{3+}$," J. Mater. Chem. C 3, 7379-7385 (2015). https://doi.org/10.1039/C5TC01054C
  9. F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. Wang, "$Yb^{3+}/Er^{3+}$ co-doped $CaMoO_4$: a promising green upconversion phosphor for optical temperature sensing," J. Alloys Compd. 639, 325-329 (2015). https://doi.org/10.1016/j.jallcom.2015.02.228
  10. S. P. Tiwari, K. Kumar, and V. K. Rai, "Latent fingermarks detection for $La_2O_3:Er^{3+}/Yb^{3+}$ phosphor material in upconversion emission mode: A comparative study," J. Appl. Phys. 118, 183109 (2015). https://doi.org/10.1063/1.4935279
  11. Y. Yang, C. Mi, F. Jiao, X. Su, X. Li, L. Liu, J. Zhang, F. Yu, Y. Liu, and Y. Mai, "A novel multifunctional upconversion phosphor: $Yb^{3+}/Er^{3+}$ codoped $La_2S_3$," J. Am. Ceram. Soc. 97, 1769-1775 (2014). https://doi.org/10.1111/jace.12822
  12. G. Boulon, "Why so deep research on $Yb^{3+}$-doped optical inorganic materials?," J. Alloys Compd. 451, 1-11 (2008). https://doi.org/10.1016/j.jallcom.2007.04.148
  13. I. Porosnicu, D. Avram, B. Cojocaru, M. Florea, and C. Tiseanu, "Up-conversion luminescence of $Er(Yb)-CeO_2$: Status and new results," J. Alloys Compd. 711, 627-636 (2017). https://doi.org/10.1016/j.jallcom.2017.04.043
  14. G. Han, M. Wang, D. Li, J. Bai, and G. Diao, "Novel upconversion Er, $Yb-CeO_2$ hollow spheres as scattering layer materials for efficient dye-sensitized solar cells," Sol. Energy Mater. Sol. Cells 160, 54-59 (2017). https://doi.org/10.1016/j.solmat.2016.10.021
  15. J. Kim, Y. Ryou, G. Hwang, J. Bang, J. Jung, Y. Bang, and D. H. Kim, "Oxychlorination of methane over $FeOx/CeO_2$ catalysts," Korean J. Chem. Eng. 35, 2185-2190 (2018). https://doi.org/10.1007/s11814-018-0135-4
  16. J.-H. Park, H. Noh, T.-S. Chang, and C.-H. Shin, "Low-temperature CO oxidation of $Pt/Al_{0.1}Ce_{0.9}Ox$ catalysts: Effects of supports prepared with different precipitants," Korean J. Chem. Eng. 35, 645-653 (2018). https://doi.org/10.1007/s11814-017-0343-3
  17. M. Yada, T. Miyaguchi, D. Watanabe, Y. Hayashi, T. Ayabe, T. Torikai, and T. Watari, "Morphological control and upconversion luminescence of hollow $CeO_2$ and $Er^{3+}-Yb^{3+}$ codoped $CeO_2$ particles," CrystEngComm 18, 8377-8387 (2016). https://doi.org/10.1039/C6CE01550F
  18. D. Han, Y. Yang, F. Gu, and Z. Wang, "Tuning the morphology and upconversion fluorescence of $CeO_2$:Er/Yb nano-octahedra," J. Alloys Compd. 656, 524-529 (2016). https://doi.org/10.1016/j.jallcom.2015.10.002
  19. Y. Guo, D. Wang, and F. Wang, "Effect of $Li^+$ ions doping on microstructure and upconversion luminescence of $CeO_2:Er^{3+}$ translucent ceramics," Opt. Mater. 42, 390-393 (2015). https://doi.org/10.1016/j.optmat.2015.01.033
  20. A. Pandey, V. K. Rai, R. Dey, and K. Kumar, "Enriched green upconversion emission in combustion synthesized $Y_2O_3:Ho^{3+}-Yb^{3+}$ phosphor," Mater. Chem. Phys. 139, 483-488 (2013). https://doi.org/10.1016/j.matchemphys.2013.01.043
  21. Y. Q. Sheng, L. L. Xu, J. Liu, D. Zhai, and Z. G. Zhang, "Improving monochromaticity of upconversion luminescence by codoping $Eu^{3+}$ ions in $Y_2O_3:Ho^{3+}$, $Yb^{3+}$ nanocrystals," J. Lumin. 130, 338-341 (2010). https://doi.org/10.1016/j.jlumin.2009.09.014
  22. A. Pandey and V. K. Rai, "Improved luminescence and temperature sensing performance of $Ho^{3+}-Yb^{3+}-Zn^{2+}:Y_2O_3$ phosphor," Dalton Trans. 42, 11005-11011 (2013). https://doi.org/10.1039/c3dt50592h
  23. P. Du, E.-J. Kim, and J. S. Yu, "Local symmetry distortion-induced enhancement of upconversion luminescence in $Gd_2O_3:Ho^{3+}/Yb^{3+}/Zn^{2+}$ nanoparticles for solid-state lighting and bioimaging," Curr. Appl. Phys. 18, 310-316 (2018). https://doi.org/10.1016/j.cap.2018.01.004
  24. A. Kumar, S. P. Tiwari, K. Kumar, and V. K. Rai, "Structural and optical properties of thermal decomposition assisted $Gd_2O_3:Ho^{3+}/Yb^{3+}$ upconversion phosphor annealed at different temperatures," Spectrochim. Acta A Mol. Biomol. Spectrosc. 167, 134-41 (2016). https://doi.org/10.1016/j.saa.2016.05.010
  25. S. Babu, J.-H. Cho, J. M. Dowding, E. Heckert, C. Komanski, S. Das, J. Colon, C. H. Baker, M. Bass, W. T. Self, and S. Seal, "Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics," Chem. Commun. 46, 6915-6917 (2010). https://doi.org/10.1039/c0cc01832e
  26. D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, "Time-gated down-/up-conversion emission of $Ho-CeO_2$ and Ho, $Yb-CeO_2$ nanoparticles," J. Lumin. 179, 265-271 (2016). https://doi.org/10.1016/j.jlumin.2016.07.026
  27. S. Mondal, A. T. Derebe, and K. Wang, "Surface functionalized carbon microspheres for the recovery of copper ion from refinery wastewater," Korean J. Chem. Eng. 35, 147-152 (2018). https://doi.org/10.1007/s11814-017-0245-4
  28. B. H. Min and K. Y. Jung, Synthesis and luminescence characteristics of fine-sized $Ba_3Si_6O_{12}N_2:Eu$ green phosphor through spray pyrolysis using $TEOS/Si_3N_4$ mixed precursors," RSC Adv. 7, 44759-44765 (2017). https://doi.org/10.1039/C7RA08620B
  29. J. Choi, K. S. Yoo, and J. Kim, "Spray pyrolysis synthesis of mesoporous $TiO_2$ microspheres and their post modification for improved photocatalytic activity," Korean J. Chem. Eng. 35, 2480-2486 (2018). https://doi.org/10.1007/s11814-018-0176-8
  30. B. H. Min, J.-H. Choi, and K. Y. Jung, "Improvement of capacitive deionization performance via using a Tiron-grafted $TiO_2$ nanoparticle layer on porous carbon electrode," Korean J. Chem. Eng. 27, 272-282 (2018).
  31. K. Y. Jung, D. Y. Lee, Y. C. Kang, and H. D. Park, "Improved photoluminescence of $BaMgAl_{10}O_{17}$ blue phosphor prepared by spray pyrolysis," J. Lumin. 105, 127-133 (2003). https://doi.org/10.1016/S0022-2313(03)00118-2
  32. J. H. Kang, W. B. Im, D. J. Lee, J. Y. Kim, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, "Correlation of photoluminescence of $(Y, Ln)VO_4:Eu^{3+}$ (Ln = Gd and La) phosphor with their crystal structure," Solid State Commun. 133, 651-656 (2005). https://doi.org/10.1016/j.ssc.2005.01.004
  33. S. H. Lee, D. S. Jung, J. M. Han, H. Y. Koo, and Y. C. Kang, "Fine-sized $Y_3Al_5O_{12}:Ce$ phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux," J. Alloys Compd. 477, 776-779 (2009). https://doi.org/10.1016/j.jallcom.2008.10.154
  34. G. Blasse, "Energy transfer in oxidic phosphors," Phys. Lett. A 28, 444-445 (1968). https://doi.org/10.1016/0375-9601(68)90486-6
  35. L. Jiang, C. Chang, D. Mao, and C. Feng, "Concentration quenching of $Eu^{2+}$ in $Ca_2MgSi_2O_7:Eu^{2+}$ phosphor," Mater. Sci. Eng. B 103, 271-275 (2003). https://doi.org/10.1016/S0921-5107(03)00261-7
  36. M. Pollnau, D. R. Gamelin, S. R. Luthi, and H. U. Gudel, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000). https://doi.org/10.1103/PhysRevB.61.3337
  37. Y. Lei, H. Song, L. Yang, L. Yu, Z. Liu, G. Pan, X. Bai, and L. Fan, "Upconversion luminescence, intensity saturation effect, and thermal effect in $Gd_2O_3:Er^{3+},Yb^{3+}$ nanowires," J. Chem. Phys. 123, 174710 (2005). https://doi.org/10.1063/1.2087487