Up-conversion Luminescence Characterization of CeO₂:Ho³⁺/Yb³⁺ Particles Prepared by Spray Pyrolysis

Kyeong Youl Jung¹*, Byeong Ho Min¹, Dae Sung Kim², and Byung-Ki Choi³

¹Department of Chemical Engineering, Kongju National University, Cheonan 31080, Korea ²Eco-composite Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET). Jinju 52851, Korea ³COV Co., Ltd., Jinchen 27845, Korea

(Received January 26, 2019 : revised February 25, 2019 : accepted February 28, 2019)

Spherical CeO₂:Ho $^{3+}$ /Yb $^{3+}$ particles were synthesized using spray pyrolysis, and the upconversion (UC) properties were investigated with changing the preparation conditions and the infrared pumping power. The resulting particles had a size of about 1 μ m and hollow structure. The prepared CeO₂:Ho³⁺/Yb³⁺ particles exhibited intense green emission due to the ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺ and showed weak red or near-IR peaks. In terms of achieving the highest UC emission, the optimal concentrations of Ho³⁺ and Yb³⁺ were 0.3% and 2.0%, respectively. The UC emission intensity of prepared CeO₂:Ho³⁺/Yb³⁺ particles had a linear relationship with crystallite size and concentration quenching was caused by dipole-dipole interaction between the same ions. Based on the dependency of UC emission on the pumping power, the observed green upconversion was achieved through a typical two-photon process and concluded that the main energy transfer from Yb^{3+} to Ho^{3+} was involved in the ground-state adsorption (GSA) process.

Keywords: Spray pyrolysis, Phosphor, Upconversion, Energy transfer

OCIS codes: (160.2540) Fluorescent and luminescent materials; (160.5690) Rare-earth-doped materials; (160.4760) Optical properties

I. INTRODUCTION

As the global market grows rapidly, forgery of products or intellectual property becomes a big problem. Companies are trying to protect their products from counterfeiting. As a result, it is very important for a company to develop its own anticounterfeiting technology. Upconversion (UC) phosphors, which convert near-infrared (NIR) to visible light, have attracted considerable attention as potential security materials because they can easily distinguish counterfeit products from original products using self-emission under NIR illumination [1-5]. The state of the art on UC phosphor technology is well introduced in recent literature [6, 7]. Most UC materials contain lanthanide ions (Ln^{3+}) as activators and sensitizers. These lanthanide ions are incorporated into inorganic hosts and play a key role in determining the luminescence color and efficiency. The composition of host materials also directly affects the UC emission color or efficiency even if the activator and sensitizer ions are same. Thus, many efforts have been dedicated to find novel hosts with the intention of achieving an improved UC performance [8-11].

Lanthanide ions such as Er³⁺, Ho³⁺, Tm³⁺ and Yb³⁺ have been used as the dopants for UC materials. Yb³⁺ is an excellent sensitizer because it has a large absorption crosssection at 980 nm compared with other Ln^{3+} ions (Ln^{3+} = Er^{3+} , Ho³⁺ and Tm³⁺) [12]. Therefore, ion pairs such as Er³⁺/Yb³⁺, Ho³⁺/Yb³⁺ and Tm³⁺/Yb³⁺ are used to improve the UC luminescence. Host materials for UC phosphors are required to have high transparency, good optical or chemical stability and low phonon energy [6]. Given this, CeO₂ is a good host because it has high transparency in the visible region, excellent chemical stability, and low photon

*Corresponding author: kyjung@kongju.ac.kr, ORCID 0000-0002-9550-9285

Color versions of one or more of the figures in this paper are available online.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ BV NC
BV NC
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ properly cited.

Copyright © 2019 Current Optics and Photonics

249

energy (~470 cm⁻¹) [13]. Thus, ceria has been used in a number of research fields including catalysts, phosphors, and sensors [14-16]. Also, lanthanide ion radii are close to the ionic radius of Ce⁴⁺ so that the dopants can be easily substituted into the lattice of CeO₂. There are a number of studies that have focused on Er^{3+} or $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ -doped CeO_2 characteristics [13, 17-19]. CeO₂:Er³⁺/Yb³⁺ has both green and red UC emissions, and the emission ratio of green to red is controllable by changing the concentration of Yb^{3+} . Similarly to the Er³⁺/Yb³⁺ couple, Ho³⁺/Yb³⁺ couples can also generate green or red depending on the type of host material. Referring to the previous studies including Y_2O_3 [20-22] and Gd_2O_3 [23, 24], using a Ho³⁺/Yb³⁺ pair rather than an Er³⁺/Yb³⁺ ion pair can be more beneficial for implementing high intense green UC phosphors. Nevertheless, there are not much studies on the synthesis and UC characteristics of CeO2:Ho3+/Yb3+ compared with $CeO_2:Er^{3+}/Yb^{3+}$. In 2010, for the first time, Babu *et al.* reported the green emission of CeO₂:Ho³⁺/Yb³⁺ and applied it to bio-imaging and therapeutics [25]. Avram et al. investigated the dependence of the UC emission color of $CeO_2:Ho^{3+}/Yb^{3+}$ on the excitation wavelength, and they observed the tunable ratio of red to green while increasing the powder density of an ac laser diode at 980 nm [26].

Although host and activator are the same, the luminescence properties of phosphor particles depend on their size and distribution, morphology, activator concentration, and activator distribution within hosts. To achieve good performance in various application fields, phosphor particles are needed to have fine size (about 1 µm) and spherical morphology. Also, high phase purity or uniform distribution of activators is critical to achieve high luminescence. Therefore, it is important to develop a synthesis method that can produce phosphor with excellent optical and morphological properties. Sprav pyrolysis has been applied to prepare various functional materials [27-30]. One particle comes from one droplet in the spray pyrolysis. All elements consisting of phosphor can exist a homogeneously mixed state in the produced particle in a molecular level as long as no phase separation occurs during the drying step. Consequently, the spray pyrolysis can easily produce finesized spherical particles having homogeneous distribution of activators within host particles. Therefore, spray pyrolysis is a good synthesis method that can prepare multi-component phosphors such as BaMgAl₁₀O₁₇:Eu, Y₃Al₅O₁₂:Ce and (Y, Ln)VO₄:Eu into spherical shape and fine size [31-33]. Nevertheless, to our best knowledge, there is no report on the synthesis of CeO₂:Ho³⁺/Yb³⁺ using the spray pyrolysis process. In this work, the spray pyrolysis was applied to prepare CeO₂:Ho³⁺/Yb³⁺ having high UC emission to be identified by the naked eye. To do this, the UC properties were optimized by controlling the Ho³⁺ and Yb³⁺ concentration. The crystallinity of CeO2:Ho3+/Yb3+ was controlled by changing the calcination temperature from 900°C to 1200°C in order to find the relationship with the UC intensity. Finally, the UC mechanism of CeO₂:Ho³⁺/Yb³⁺

prepared by spray pyrolysis was investigated by monitoring the dependency of the UC intensity on the IR pumping power while changing the activator concentration.

II. EXPERIMENTAL

The CeO₂:Ho³⁺/Yb³⁺ particles were synthesized by a spray pyrolysis process consisting of an ultrasonic nebulizer (1.7 MHz), a quartz tube (ID = 55 mm and length = 1200 mm), an electrical furnace and a Teflon bag filter. Cerium nitrate hexahydrate (Aldrich, 99.99%), holmium oxide (Aldrich, 99.9%) and ytterbium oxide (Aldrich, 99.99%) were used as the starting materials. Spray solution was prepared by the following procedure. The activator (Ho^{3+}) and sensitizer (Yb³⁺) precursors were dissolved by using nitric acid as a nitrate form and followed by adding the purified water until the total solution becomes 250 mL. Cerium nitrate was dissolved in 250 mL of purified water and mixed with the activator and sensitizer solution. The total salt concentration was kept at 0.2 M. The Ho (x) and Yb (y) contents in $Ce_{1-x-y}O_2$:Ho_x/Yb_y were changed from x = 0.001 to x =0.007 and from y = 0.005 to y = 0.060. The prepared precursor solution was turned into droplets using an ultrasonic nebulizer and carried into the quartz reactor (900°C) by air (30 L/min). The produced particles were collected by a Teflon bag filter and calcined at the temperature range from 900 to 1200°C for 3 h in an air environment.

The UC emission of all samples was measured using a spectrophotometer (PerkinElmer, LS 50) under the excitation of 980 nm IR laser (Optoenergy, PL980P330J). The dependency of UC emission on the pumping powder was monitored by varying the pumping power from 100 to 1000 mW. The crystal phase of CeO₂:Ho³⁺/Yb³⁺ powder prepared was identified by X-ray diffraction (XRD, Rigaku, MiniFlex600) measurement. The morphology of the prepared particles were identified by using high-resolution scanning electron microscopy (HR-SEM, Hitachi S4800) at the Korea Basic Science Institute (KBSI).

III. RESULTS AND DISCUSSION

Figure 1 shows the UC emission spectrum and energy level diagram of CeO₂:Ho³⁺ (x = 0.005) and CeO₂:Ho³⁺/Yb³⁺ (x = 0.005, y = 0.005) particles prepared by spray pyrolysis and calcined at 1000°C. The observed three peaks are due to the ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$ (550 nm, green), ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ (670 nm, red) and ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{7}$ (760 nm, NIR) transition of Ho³⁺ ions [26]. Figure 1(b) shows the energy level diagram of Ho³⁺ and Yb³⁺. The absorption cross section of Yb³⁺ ions is much larger than that of Ho³⁺ ions. Thus, the Yb³⁺ ions absorbs much more photons than the Ho³⁺ ions. The ${}^{2}F_{5/2}$ energy level of Yb³⁺ is located slightly higher than the ${}^{5}I_{6}$

level of Ho³⁺. Thus, the energy transfer (ET) from Yb³⁺ to Ho³⁺ is possible and can take part in both ground state adsorption (GSA) and excited state adsorption (ESA) processes. The photons populated in the ⁵I₆ state of Ho³⁺ through the GSA process can be further excited to the ⁵F₄/⁵S₂ level via the ESA or ET processes. The photons excited to the ⁵F₄/⁵S₂ level decay to the ⁵I₈ and ⁵I₇ states of Ho³⁺, emitting green and NIR light, respectively. A part of photons in the ⁵F₄/⁵S₂ level can also relax nonradiatively to the ⁵F₅ level and radiatively to the ground state (⁵I₈), which corresponds to the red emission at about 670 nm. The

red emission can be also possible through the consecutive path of GSA (${}^{5}I_{8} \rightarrow {}^{5}I_{6}$), non-radiative relaxation (${}^{5}I_{6} \rightarrow {}^{5}I_{7}$), ESA (${}^{5}I_{7} \rightarrow {}^{5}F_{5}$) and radiative decay (${}^{5}F_{5} \rightarrow {}^{5}I_{8}$). For CeO₂:Ho³⁺, as shown in Fig. 1(a), the green emission is strong, but other two (red and NIR) peaks are weak. That is, the UC emission of CeO₂:Ho³⁺ is achieved mainly through the ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$ transition after the ground-state absorption (GSA) (${}^{5}I_{8} \rightarrow {}^{5}I_{6}$) and excitation-state absorption (ESA) (${}^{5}I_{6} \rightarrow {}^{5}F_{4}$). The UC emission of CeO₂:Ho³⁺/Yb³⁺ is much higher than that of CeO₂:Ho³⁺. Given this, the Yb³⁺ co-doping leads to the enhanced UC intensity due to an

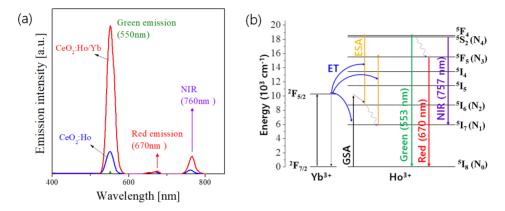


FIG. 1. (a) Emission spectra measured under the excitation of 980 nm IR laser for CeO_2 :Ho³⁺ and CeO_2 :Ho³⁺/Yb³⁺ particles prepared by spray pyrolysis and (b) energy-level diagram for Ho³⁺ and Yb³⁺ ions.

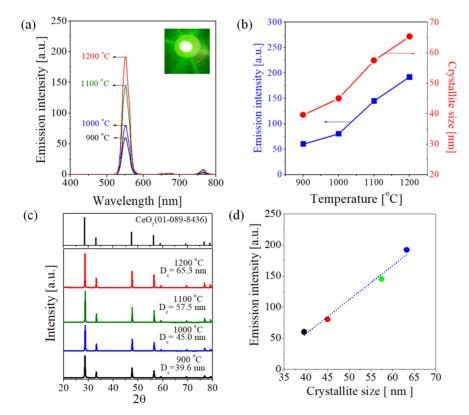


FIG. 2. (a) Emission spectra and (b) emission intensity as a function of calcination temperature, (c) XRD patterns, and (d) emission intensity as a function of crystallite size for $CeO_2:Ho^{3+}/Yb^{3+}$ powder prepared by spray pyrolysis.

effective energy transfer from Yb³⁺ to Ho³⁺.

The UC properties of CeO₂:Ho³⁺/Yb³⁺ prepared by spray pyrolysis were investigated by changing the calcination temperature. Figure 2(a) shows the UC spectra of CeO₂:Ho³⁺/Yb³⁺ particles and the green emission intensity at 550 nm is shown in Fig. 2(b) as a function of the calcination temperature. There is no difference in the emission spectrum except the intensity with changing the calcination temperature, indicating that the main UC path of CeO₂:Ho³⁺/Yb³⁺ is not affected. The UC emission of the CeO₂:Ho³⁺/Yb³⁺ sample calcined at 1200°C was photographed under irradiation of 980 nm IR. As shown in the inset of Fig. 1(a). The CeO₂:Ho³⁺/Yb³⁺ particles have excellent green emission. The emission intensity increases gradually as the calcination temperature increases, which is mainly due to the increase of crystallinity. To confirm this, XRD measurements were carried out. Figure 2(c) shows XRD patterns of the prepared CeO₂:Ho³⁺/Yb³⁺ samples. All peaks are in good agreement with the cubic phase of CeO₂ and no impurity phase is observed regardless of the calcination temperature. For solid oxides, the crystallinity can be evaluated from the crystallite size. That is, the larger the crystallite size, the higher the crystallinity. The crystallite size was calculated by Scherrer's equation, and the resulting values are shown within Fig. 2(c). The crystallite size increases as the calcination temperature increases, indicating that the crystallinity is gradually improved. Figure 2(d) shows the dependence of the emission intensity on the crystallite size. The emission intensity has a linear relation with the crystallite size. This result supports that the enhancement in the crystallinity is critical to improve the emission intensity.

251

Figure 3 is SEM photos of CeO₂:Ho³⁺/Yb³⁺ particles prepared by changing the calcination temperature from 900 to 1200°C. The formation mechanism of CeO2:Ho/Yb hollow particles in spray pyrolysis is also shown in Fig. 3(f). The as-prepared particles have spherical shape that is maintained even after the calcination at 1200°C. The prepared particles show a hollow structure that is frequently encountered in a conventional spray pyrolysis process. No significant change in the particle morphology was observed by increasing the calcination temperature. As shown in Fig. 3(f), the spray pyrolysis produces particles through drying, precipitation and pyrolysis (thermal decomposition). The fast drying of droplets increases the surface concentration of droplets. As a result, the salt concentration on the surface of the water droplet reaches the supersaturation point, so surface precipitation occurs and forms a shell layer. Thereafter, as the water drying progresses further, the precipitation proceeds on the inner surface of the initially formed solid shell. In this step, evaporated water molecules escape solid layers, making the precipitated layer porous. Next, thermal decomposition (pyrolysis) takes place, producing many gas molecules. Because the solid layer is porous, these gas molecules can be ejected outside the solid layer without the deformation of the particle. Finally, the shell layer is turned into nano-sized crystals by the high-temperature

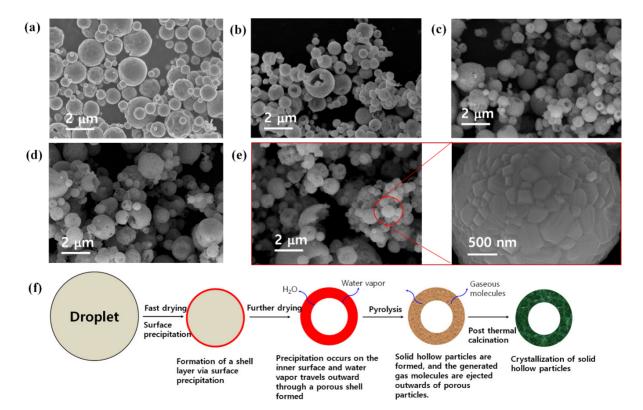


FIG. 3. SEM photos of CeO_2 :Ho³⁺/Yb³⁺ powder prepared by spray pyrolysis: (a) as-prepared, (b) 900°C, (c) 1000°C, (d) 1100°C and (e) 1200°C. (f) Particle formation mechanism in spray pyrolysis.

calcination, which can be identified in Fig. 3(e). The obtained CeO₂:Ho³⁺/Yb³⁺ particles are about 1 μ m in size and have a hollow structure. Based on the SEM result, it was confirmed that spherical and fine-sized CeO₂:Ho³⁺/Yb³⁺ particles with high green UC emission could be synthesized by spray pyrolysis.

Figure 4 shows the effect of the Ho³⁺ and Yb³⁺ content on the UC properties of CeO₂:Ho³⁺/Yb³⁺ particles prepared by spray pyrolysis. First, at the fixed Ho^{3+} content (x = 0.005) the UC emission is monitored by changing the Yb^{3+} content (y) from 0.005 to 0.06 and the resulting spectra are shown in Fig. 4(a). The UC intensity was significantly improved by the introduction of Yb³⁺, and the highest emission intensity was observed at y = 0.02. There was no significant improvement in the red or NIR emission. Next, the UC emission is examined by changing the Ho³⁺ content (x) at y = 0.02 and the resulting spectra are shown in Fig. 4(b). The highest UC emission was obtained at x = 0.003. Figure 4(c) shows the effect of both Ho^{3+} and Yb^{3+} contents on the UC emission intensity ($\lambda_{em} = 553$ nm). From these results, the optimum contents of $Ho^{3+}(x)$ and $Yb^{3+}(y)$ to achieve the highest UC intensity were determined as x =0.003 and y = 0.02.

The luminescence intensity of $CeO_2:Ho^{3+}/Yb^{3+}$ is reduced when the Ho^{3+} content is larger than 0.003 and the Yb^{3+} content is larger than 0.02. The concentration quenching of the emission intensity in phosphor materials is basically connected with the non-radiative energy transfer between dopants. The critical distance (R_c) between dopants for the non-radiative energy transfer can be calculated by the following equation [34].

$$R_c = 2 \left(\frac{3V}{4\pi N z_c}\right)^{1/3} \tag{1}$$

where z_c is the critical concentration, *V* is the unit cell volume (158.5 Å) and *N* is the number of cations in the unit cell (*N*=4). Then, the calculated critical distances are about 15.6 Å and 29.3 Å for Yb³⁺ ($z_c = 0.02$) and Ho³⁺ ($z_c = 0.003$), respectively. Also, the average critical distance for the total dopants ($z_c = 0.023$) is about 14.9 Å. The exchange interaction is known to be possible when the critical distance is less than about 5 Å. The calculated critical distance is much larger than 5 Å. Therefore, the non-radiative energy transfer between Ho³⁺ or Yb³⁺ ions

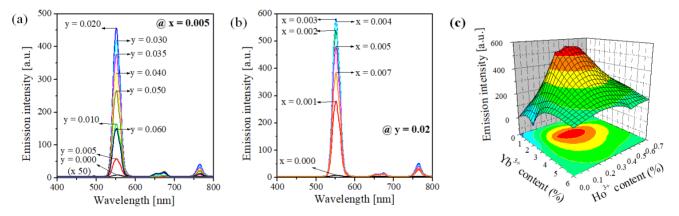


FIG. 4. Concentration effect of Ho^{3+} and Yb^{3+} on the upconversion properties of $Ce_{1-x-y}O_2$: xHo^{3+}/yYb^{3+} : Emission spectra (a and b) and three-dimensional plot of the green emission intensity (c) while changing the amount of Yb^{3+} and Ho^{3+} ions. All samples are calcined at 1200°C.

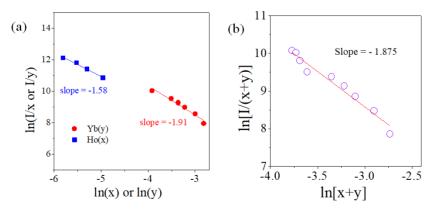


FIG. 5. Linear plots between of (a) $\ln(I/x \text{ or } I/y)$ against $\ln(x \text{ or } y)$ and (b) $\ln(I/(x+y))$ versus $\ln(x+y)$ for $\operatorname{Ce}_{1-x-y}O_2:x\operatorname{Ho}^{3+}/yYb^{3+}$.

mainly occurs through the multipolar interaction processes. To elucidate the type of multipolar interaction, the following relation between the emission intensity (I) and the activator concentration (z) can be used [35].

$$\frac{I}{z} = \frac{K}{1 + \beta z^{Q/3}}.$$
(2)

where K and b are interaction constants. The multipolar character (Q) is 6, 8, and 10 for dipole-dipole, dipolequadruple and quadruple-quadruple interactions, respectively. The Q value can be estimated from the slope of ln(I/z) vs. ln(z) assuming that $\beta z^{Q/3} \gg 1$. Figure 5(a) shows the fitting of ln(I/z) vs. ln(z) (z = x for Ho³⁺ and z = y for Yb³⁺). The resulting Q values are 4.74 and 5.73 for Ho³⁺ and Yb³⁺, respectively. These values are close to 6. In addition, as shown in the inset of Fig. 5(b), the Q value is 5.62 when calculated based on the total dopant concentration, indicating the energy transfer occurs via the dipole-dipole interaction process.

The emission was monitored while changing the IR pumping power in order to investigate the UC mechanism of CeO_2 :Ho³⁺/Yb³⁺. Figure 6(a) shows the emission spectra measured with a current variation of the IR laser for the

sample of CeO₂:Ho_{0.003}/Yb_{0.02}. The emission progressively increases with the increase of laser current. In UC phosphors, the emission intensity (I) is known to be proportional to P^n , $(I \propto P^n)$, where P is the IR pumping power and n presents the photon number for achieving one UC emission. Then, the n value is equal to the slope of ln(I) vs. ln(P) plot. As shown in Fig. 6(b), the n value estimated from the fitting resulting is 1.95, which is close to 2. Therefore, the green emission of CeO₂:Ho_{0.003}/Yb_{0.02} is mainly achieved by the two-photon process. For the $CeO_2:Ho_x/Yb_y$ samples prepared by changing the Ho^{3+} and Yb³⁺ content, the n values were estimated and shown in Figs. 6(c) and 6(d) as a function of the dopant content. For CeO₂:Ho_{0.005}, the n value is 1.31. As shown Fig. 6(c), the n value progressively increases up to 2 while increasing the content of Yb³⁺. At a fixed Yb³⁺ content (y = 0.02), the n values increase monotonically from 1.69 to 2.0 while increasing the Ho³⁺ content from 0.01% to 0.5% (Fig. 6(d)). According to the previous report [36, 37], the UC mechanism can be explained by considering the competition between linear decay and upconversion for the depletion of photons in intermediate states. The intermediate and emission energy levels for the green emission are ${}^{5}I_{6}$ and ${}^{5}F_{4}/{}^{5}S_{2}$ of Ho³⁺, which are denoted as N₂ and N₄ in Fig.

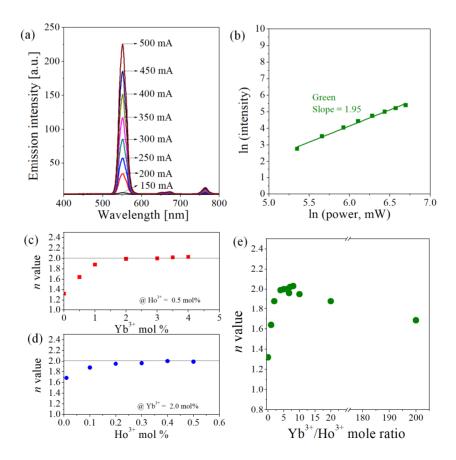


FIG. 6. (a) Upconversion emission spectra at different pumping power and (b) logarithmic dependence of green peak intensity as a function of pumping power for CeO₂:Ho_x³⁺/Yb_y³⁺ (x=0.003, y=0.02). Changes in the n value as a function of (c) Yb³⁺mol%, (d) Ho³⁺ mol% and (e) Yb³⁺/Ho³⁺ mole ratio.

1(b), respectively. When the dominant depletion of photons in the N₂ level is achieved by the linear decay, the emission from the N₄ level is proportional to P^2 (n = 2). On the contrary, the UC emission is proportional to P (n = 1) when the upconversion is dominant for the photon depletion of the N₂ level. For the sample prepared without Yb^{3+} , the n value is 1.31. Given this, the upconversion dominates the depletion of photons in the intermediate N₂ level when no Yb³⁺ is doped. In the case of codoping Yb³⁺, the n values progressively increase up to 2.0 with increasing the Yb³⁺ content. The n values remain closely to 2.0 even when the Yb³⁺ concentration is 2.0 mol% or larger. Figure 6(e) shows the n value as a function of the Yb³⁺/Ho³⁺ mole ratio. The n value rapidly increases until the Yb³⁺/Ho³⁺ mole ratio becomes about 5 and steadily decreases when the Yb³⁺/Ho³⁺ mole ratio is larger than about 10. This result indicates that the upconversion mechanism strongly depends on the Yb^{3+}/Ho^{3+} ratio. The energy transfer (ET) from Yb³⁺ to Ho³⁺ can occur in the transition of ${}^{5}I_{8} \rightarrow$ ${}^{5}I_{6}$ (N₀ \rightarrow N₂) (GSA) or ${}^{5}I_{6} \rightarrow {}^{5}F_{4}/{}^{5}S_{2}$ (N₂ \rightarrow N₄) (ESA). If the energy transfer is mainly involved in the ${}^{5}I_{6} \rightarrow {}^{5}F_{4}/{}^{5}S_{2}$ transition (ESA process), the photons at the intermediate level (${}^{5}I_{6}$, N₂) should be depleted by upconversion as the Yb³⁺ content or the Yb³⁺/Ho³⁺ ratio increases. As a result, the green emission should be proportional to P^1 as the Yb³⁺ content increases. This situation is not in agreement with the experimental data. According to the results shown in Fig. 6(c), even if the Yb³⁺ content increases to larger than 2.0 at%, the n value does not decrease to 2 or less. Therefore, to meet this experimental result, the energy transfer from Yb³⁺ to Ho³⁺ should take place dominantly through the GSA process and the photon depletion at the intermediate level should be mainly caused by the linear decay. However, if the Yb³⁺ content is too high compared with the Ho^{3+} concentration, the energy transfer from Yb^{3+} to Ho3+ through the ESA process becomes large and not negligible. That is, the photons at the intermediate energy level (N₂) are competitively consumed by upconversion and linear decay. This is in agreement with the experimental results in which the n value decreases below 2.0 when the Yb^{3+}/Ho^{3+} ratio is greater than 10.

IV. CONCLUSION

CeO₂:Ho³⁺/Yb³⁺ was prepared synthesized by spray pyrolysis. The resulting CeO₂:Ho³⁺/Yb³⁺ particles with spherical shape and hollow structure showed intense green emission due to the ${}^{5}F_{4}/{}^{5}S_{2} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺ ion and minor peaks in red and NIR under the 980 nm IR irradiation. The Yb³⁺ co-doping clearly made it possible to largely improve the upconversion green emission due to the energy transfer from Yb³⁺ to Ho³⁺. In terms of achieving the highest emission, the optimal content of Ho³⁺ (x) and Yb³⁺ (y) ions were found to be x = 0.003 and y = 0.02 in CeO₂:Ho_x³⁺/Yb_y³⁺. The upconversion emission

intensity showed a linear relationship with the crystallite size of CeO₂ and the concentration quenching between the same doping ions was proved to occur mainly via a dipole-dipole interaction process. The green upconversion of CeO₂:Ho³⁺/Yb³⁺ optimized in terms of the emission intensity was achieved by a typical two-photon process. The energy transfer from Yb³⁺ to Ho³⁺ was concluded to mainly occur in the ground-state adsorption step (${}^{5}I_{8} \rightarrow {}^{5}I_{6}$) of Ho³⁺ ions unless the Yb³⁺/Ho³⁺ ratio is greater than 10.

ACKNOWLEDGMENT

This work was supported by the Technology Innovation Program (Advanced Technology Center, ATC) funded by the Ministry of Trade, Industry & Energy, Republic of Korea (Grant no. 10052088).

REFERENCES

- P. Kumar, K. Nagpal, and B. K. Gupta, "Unclonable security codes designed from multicolor luminescent lanthanide-doped Y₂O₃ nanorods for anticounterfeiting," ACS Appl. Mater. Interfaces 9, 14301-14308 (2017).
- K. Y. Jung, J. C. Lee, D. S. Kim, B.-K. Choi, and W.-J. Kang, "Co-doping effect of monovalent alkali metals on optical properties of CeO₂:Eu nanophosphor prepared by spray pyrolysis and application for preparing pearlescent pigments with red emission," J. Lumin. **192**, 1313-1321 (2017).
- P. Kumar, S. Singh, and B. K. Gupta, "Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications," Nanoscale 8, 14297-14340 (2016).
- J. Andres, R. D. Hersch, J. E. Moser, and A. S. Chauvin, "A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks," Adv. Funct. Mater. 24, 5029-5036 (2014).
- Y. Liu, K. Ai, and L. Lu, "Designing lanthanide-doped nanocrystals with both up-and down-conversion luminescence for anti-counterfeiting," Nanoscale 3, 4804-4810 (2011).
- G. Chen, H. Qiu, P. N. Prasad, and X. Chen, "Upconversion nanoparticles: design, nanochemistry, and applications in theranostics," Chem. Rev. 114, 5161-5214 (2014).
- J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, "Upconversion luminescent materials: advances and applications," Chem. Rev. 115, 395-465 (2015).
- H. Suo, C. Guo, Z. Yang, S. Zhou, C. Duan, and M. Yin, "Thermometric and optical heating bi-functional properties of upconversion phosphor Ba₅Gd₈Zn₄O₂₁:Yb³⁺/Tm³⁺," J. Mater. Chem. C **3**, 7379-7385 (2015).
- F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. Wang, "Yb³⁺/Er³⁺ co-doped CaMoO₄: a promising green upconversion phosphor for optical temperature sensing," J. Alloys Compd. 639, 325-329 (2015).
- S. P. Tiwari, K. Kumar, and V. K. Rai, "Latent fingermarks detection for La₂O₃:Er³⁺/Yb³⁺ phosphor material in upcon-

version emission mode: A comparative study," J. Appl. Phys. **118**, 183109 (2015).

- Y. Yang, C. Mi, F. Jiao, X. Su, X. Li, L. Liu, J. Zhang, F. Yu, Y. Liu, and Y. Mai, "A novel multifunctional upconversion phosphor: Yb³⁺/Er³⁺ codoped La₂S₃," J. Am. Ceram. Soc. **97**, 1769-1775 (2014).
- G. Boulon, "Why so deep research on Yb³⁺-doped optical inorganic materials?," J. Alloys Compd. 451, 1-11 (2008).
- I. Porosnicu, D. Avram, B. Cojocaru, M. Florea, and C. Tiseanu, "Up-conversion luminescence of Er(Yb)-CeO₂: Status and new results," J. Alloys Compd. **711**, 627-636 (2017).
- G. Han, M. Wang, D. Li, J. Bai, and G. Diao, "Novel upconversion Er, Yb-CeO₂ hollow spheres as scattering layer materials for efficient dye-sensitized solar cells," Sol. Energy Mater. Sol. Cells 160, 54-59 (2017).
- J. Kim, Y. Ryou, G. Hwang, J. Bang, J. Jung, Y. Bang, and D. H. Kim, "Oxychlorination of methane over FeOx/CeO₂ catalysts," Korean J. Chem. Eng. 35, 2185-2190 (2018).
- J.-H. Park, H. Noh, T.-S. Chang, and C.-H. Shin, "Low-temperature CO oxidation of Pt/Al_{0.1}Ce_{0.9}O *x* catalysts: Effects of supports prepared with different precipitants," Korean J. Chem. Eng. **35**, 645-653 (2018).
- M. Yada, T. Miyaguchi, D. Watanabe, Y. Hayashi, T. Ayabe, T. Torikai, and T. Watari, "Morphological control and upconversion luminescence of hollow CeO₂ and Er³⁺-Yb³⁺ codoped CeO₂ particles," CrystEngComm 18, 8377-8387 (2016).
- D. Han, Y. Yang, F. Gu, and Z. Wang, "Tuning the morphology and upconversion fluorescence of CeO₂:Er/Yb nano-octahedra," J. Alloys Compd. 656, 524-529 (2016).
- Y. Guo, D. Wang, and F. Wang, "Effect of Li⁺ ions doping on microstructure and upconversion luminescence of CeO₂:Er³⁺ translucent ceramics," Opt. Mater. 42, 390-393 (2015).
- A. Pandey, V. K. Rai, R. Dey, and K. Kumar, "Enriched green upconversion emission in combustion synthesized Y₂O₃:Ho³⁺-Yb³⁺ phosphor," Mater. Chem. Phys. **139**, 483-488 (2013).
- Y. Q. Sheng, L. L. Xu, J. Liu, D. Zhai, and Z. G. Zhang, "Improving monochromaticity of upconversion luminescence by codoping Eu³⁺ ions in Y₂O₃:Ho³⁺, Yb³⁺ nanocrystals," J. Lumin. **130**, 338-341 (2010).
- A. Pandey and V. K. Rai, "Improved luminescence and temperature sensing performance of Ho³⁺-Yb³⁺-Zn²⁺:Y₂O₃ phosphor," Dalton Trans. 42, 11005-11011 (2013).
- P. Du, E.-J. Kim, and J. S. Yu, "Local symmetry distortioninduced enhancement of upconversion luminescence in Gd₂O₃:Ho³⁺/Yb³⁺/Zn²⁺ nanoparticles for solid-state lighting and bioimaging," Curr. Appl. Phys. 18, 310-316 (2018).
- A. Kumar, S. P. Tiwari, K. Kumar, and V. K. Rai, "Structural and optical properties of thermal decomposition assisted Gd₂O₃:Ho³⁺/Yb³⁺ upconversion phosphor annealed at different temperatures," Spectrochim. Acta A Mol. Biomol.

Spectrosc. 167, 134-41 (2016).

- 25. S. Babu, J.-H. Cho, J. M. Dowding, E. Heckert, C. Komanski, S. Das, J. Colon, C. H. Baker, M. Bass, W. T. Self, and S. Seal, "Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics," Chem. Commun. 46, 6915-6917 (2010).
- D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, "Time-gated down-/up-conversion emission of Ho-CeO₂ and Ho, Yb-CeO₂ nanoparticles," J. Lumin. 179, 265-271 (2016).
- S. Mondal, A. T. Derebe, and K. Wang, "Surface functionalized carbon microspheres for the recovery of copper ion from refinery wastewater," Korean J. Chem. Eng. 35, 147-152 (2018).
- B. H. Min and K. Y. Jung, Synthesis and luminescence characteristics of fine-sized Ba₃Si₆O₁₂N₂:Eu green phosphor through spray pyrolysis using TEOS/Si₃N₄ mixed precursors," RSC Adv. 7, 44759-44765 (2017).
- J. Choi, K. S. Yoo, and J. Kim, "Spray pyrolysis synthesis of mesoporous TiO₂ microspheres and their post modification for improved photocatalytic activity," Korean J. Chem. Eng. 35, 2480-2486 (2018).
- B. H. Min, J.-H. Choi, and K. Y. Jung, "Improvement of capacitive deionization performance via using a Tiron-grafted TiO₂ nanoparticle layer on porous carbon electrode," Korean J. Chem. Eng. 27, 272-282 (2018).
- K. Y. Jung, D. Y. Lee, Y. C. Kang, and H. D. Park, "Improved photoluminescence of BaMgAl₁₀O₁₇ blue phosphor prepared by spray pyrolysis," J. Lumin. **105**, 127-133 (2003).
- 32. J. H. Kang, W. B. Im, D. J. Lee, J. Y. Kim, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, "Correlation of photoluminescence of (Y, Ln)VO₄:Eu³⁺ (Ln = Gd and La) phosphor with their crystal structure," Solid State Commun. 133, 651-656 (2005).
- S. H. Lee, D. S. Jung, J. M. Han, H. Y. Koo, and Y. C. Kang, "Fine-sized Y₃Al₅O₁₂:Ce phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux," J. Alloys Compd. **477**, 776-779 (2009).
- 34. G. Blasse, "Energy transfer in oxidic phosphors," Phys. Lett. A 28, 444-445 (1968).
- L. Jiang, C. Chang, D. Mao, and C. Feng, "Concentration quenching of Eu²⁺ in Ca₂MgSi₂O₇:Eu²⁺ phosphor," Mater. Sci. Eng. B 103, 271-275 (2003).
- M. Pollnau, D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, "Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems," Phys. Rev. B 61, 3337-3346 (2000).
- Y. Lei, H. Song, L. Yang, L. Yu, Z. Liu, G. Pan, X. Bai, and L. Fan, "Upconversion luminescence, intensity saturation effect, and thermal effect in Gd₂O₃:Er³⁺,Yb³⁺ nanowires," J. Chem. Phys. **123**, 174710 (2005).