• 제목/요약/키워드: splitting failure

검색결과 148건 처리시간 0.022초

RTM 공정에 의해 생산된 GFRP 보강근의 콘크리트 부착특성에 관한 실험연구 (An Experimental Study on the Bond Characteristics of GFRP Rebar to Concrete Produced by RTM (Resin Transfer Molding) Process)

  • 박지선;유영찬;박영환;유영준;김형열;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.297-300
    • /
    • 2005
  • The bond characteristics of GFRP(glass fiber reinforced polymer) rods with various surface deformation produced by RTM(resin transfer molding) process were analyzes experimentally. Two types of GFRP rods with different surface deformation manufactured by RTM process in domestic area and two types of GFRP rebars imported were considered in this study. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the CSA S806-02 recommendations. From the test results, it was found that deformed-type GFRP rod manufactured by RTM process showed the highest bond strength among test specimen. But, wave-type GFRP rod made by RTM process show the lowest value due to the splitting failure of concrete caused by the wedge action of waved surfaces on GFRP rods.

  • PDF

높은마디면적 철근의 부착 성능평가 (Evaluate Bond Strength of High Relative Rib Area Bars)

  • 양승열;서동민;홍건호;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.311-314
    • /
    • 2005
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. In this study, to evaluate bond strength of high relative rib area bars, beam-end bond and splice beam specimens are tested and the results are discussed. Higher rib height bars when bars are confined showed higher bond strength than lower rib height bars.

  • PDF

하이브리드 섬유를 사용한 고인성 섬유보강 시멘트 복합체내의 철근이음에 관한 실험적 연구 (An Experimental Study on the Splice of Reinforcement Embedded in High Performance Hybrid Fiber Reinforced Cementitious Composites)

  • 전에스더;양일승;한병찬;서수연;윤승조;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.319-322
    • /
    • 2005
  • Experimental results on splice strength of concrete and hybrid fiber reinforced cementitious composite are reported. Two series of tests, with six specimens each, were carried out. The research parameters were: bar diameter(D16, D22), lap splice length(50, 75, 100$\%$). The current experimental results demonstrated clearly that the use of hybrid fibers in cementitious matrixes increases significantly the splice strength of reinforcing bars in tension. Also, the presence of fibers increased the number of cracks formed around the spliced bars, delayed the growth of the splitting cracks, and consequently, improved the ductility of bond failure.

  • PDF

갈고리 시험체를 이용한 높은마디면적 철근의 정착성능 (Evaluate Anchorage Strength of High Relative Rib Area Bars Using Hook Test Specimens)

  • 서동민;홍기섭;최동욱;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.327-330
    • /
    • 2005
  • Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force in practice has a limitation. Thus, the only variable is the bearing area corresponding to the change of bond force. In this study, to the evaluate anchorage strength of high relative rib area bars, hook bond test specimens are tested and the results are discussed. Higher rib height bars when bars are confined showed higher anchorage strength than lower rib higher bars.

  • PDF

Development Strength of Headed Reinforcing Bars for Steel Fiber Reinforced Concrete by Pullout Test

  • Kim, Seunghun;Paek, Sungchol;Lee, Changyong;Yuk, Hyunwoong;Lee, Yongtaeg
    • Architectural research
    • /
    • 제20권4호
    • /
    • pp.129-135
    • /
    • 2018
  • In order to compare the development performance of headed reinforcing bar and straight reinforcing bar in tension for steel fiber reinforced concrete (SFRC), pullout test of specimens with reinforcing bar which was anchored on simple beam perpendicularly was conducted. The experimental variables were steel fiber volume ratio ($V_{Rsf}$), concrete compressive strength, and existence of head. As the result of test, splitting failure of concrete in the development direction of reinforcing bar in most specimens was observed. For development detail of headed reinforcing deformation bar, specimens with 1% $V_{Rsf}$ showed approximately 63%~119% increase in pullout strength compare to specimens with 0% $V_{Rsf}$. Test result shows that SFRC is more effective in increasing pullout strength for headed reinforcing bars than increasing pullout strength of straight bars.

Structural behavior of steel beams strengthened with CFRP strips and cables

  • Lim, Donghwan
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.289-298
    • /
    • 2022
  • In the present study, structural behavior of steel beams strengthened with CFRP strips and cables was investigated by a series of experiments. For this purpose, two groups of experimental studies were carried out: one for the beam series strengthened only with CFRP strips and the other for the steel beam series strengthened with CFRP strips and prestressed wires. From this test, it is found that the flexural stiffness and strength of the steel beams strengthened with CFRP strips and cables were significantly improved comparing to the un-strengthened one. Three failure modes such as sudden de-bonding, splitting and rupturing of CFRP strips were observed. The ultimate tensile strains of attached CFRP strips on the steel beams were noticed in the range between 8,000με and 11,000με, and this result disclose the perfect composite reaction CFRP strips and steel beams.

외부구속자켓의 구속비와 강도비에 따른 콘크리트 부착거동의 특성 (Characteristics of Bond Behavior According to Confinement and Stiffness Ratios of External Confining Jackets)

  • 최은수;정춘성
    • 대한토목학회논문집
    • /
    • 제34권1호
    • /
    • pp.87-94
    • /
    • 2014
  • 이 연구에서는 형상기억합금과 강재로 구속된 콘크리트의 부착응력을 외부자켓의 구속비 및 강도비를 이용하여 분석하였다. 이를 위해서 직경 1.0 mm 형상기억합금 와이어와 두께 1.0 mm와 1.5 mm 강판을 사용하여, 구속비 및 강도비의 차이를 유발하여 각 변수의 차이에 따른 부착강도 및 부착거동을 분석하였다. 외부자켓 구속에 의해서 콘크리트의 부착강도는 증가하였으며, 파괴형태도 쪼갬파괴에서 뽑힘파괴로 전환되어 구속효과가 있음을 알 수 있었다. 콘크리트 부착강도는 구속비와 강도비가 증가함에 따라 증가하는 현상을 보이지만, 특정 시점부터는 부착강도가 거의 증가하지 않고 일정한 값을 나타내는 결과를 보였다. 그러나 강도비의 증가에 따라 발생하는 원주방향 최대 변형율은 거의 선형적으로 감소하는 결과를 보였다.

Coconut shell waste as an alternative lightweight aggregate in concrete- A review

  • Muhammad Fahad, Ejaz;Muhammad ,Aslam;Waqas, Aziz;M. Jahanzaib, Khalil;M. Jahanzaib, Ali;Muhammad, Raheel;Aayzaz, Ahmed
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.299-330
    • /
    • 2022
  • This review article highlights the physical, mechanical, and chemical properties of coconut shells, and the fresh and hardened properties of the coconut shell concrete are summarized and were compared with other types of aggregates. Furthermore, the structural behavior in terms of flexural, shear, and torsion was also highlighted, with other properties including shrinkage, elastic modulus, and permeability of the coconut shell concrete. Based on the reviewed literature, concrete containing coconut shell as coarse aggregate with normal sand as fine showed the 28-day compressive strength between 2 and 36 MPa with the dried density range of 1865 to 2300 kg/m3. Coconut shell concretes showed a 28-day modulus of rupture and splitting tensile strength values in the ranges of 2.59 to 8.45 MPa and 0.8 to 3.70 MPa, respectively, and these values were in the range of 5-20% of the compressive strength. The flexural behavior of CSC was found similar to other types of lightweight concrete. There were no horizontal cracks on beams which indicate no bond failure. Whereas, the diagonal shear failure was prominent in beams with no shear reinforcements while flexural failure mode was seen in beams having shear reinforcement. Under torsion, CSC beams behave like conventional concrete. Finally, future recommendations are also suggested in this study to investigate the innovative lightweight aggregate concrete based on the environmental and financial design factors.

계면요소를 이용한 경량철근콘크리트 보의 전단거동해석 (Analysis of Shear Behavior of Reinforced ALWAC Beam Using Interface Elements)

  • 이인규;김우
    • 대한토목학회논문집
    • /
    • 제26권1A호
    • /
    • pp.107-115
    • /
    • 2006
  • 전단보강이 없는 철근콘크리트 보의 파괴특성의 정의는 현재까지는 어려운 주제이다. 과거의 본질적인 실험적 연구와 이론적인 노력에도 불구하고 전단파괴의 특성은 완전히 이해되지 않았다. 따라서 보의 설계시 전단강도 산정에 반경험식의 적용이 되어오고 있다. 최근의 다양한 건설환경 하에서 고성능 콘크리트의 수요가 증가하고 있으며 내구성을 포함한 가격경쟁력이 뛰어난 재료들이 필요하며 특히 경량철근콘크리트의 경우에는 경량이면서 적절한 강도를 가지고 온도와 소음차단에 효과적이기 때문에 주요부재 및 구조물에 응용할 수 있다. 이러한 장점에도 불구하고 그의 극한파괴거동에 대해서는 다소 잘 정리되어 있지 않다. 이러한 이유로 본 연구에서는 경량철근콘크리트 보의 전단거동을 살펴보며 그의 특이성을 기존 실험적 연구와 해석적 연구를 통해 비교, 검토하고자 하였다.

Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus

  • Komurlu, Eren;Kesimal, Ayhan;Demir, Serhat
    • Geomechanics and Engineering
    • /
    • 제10권6호
    • /
    • pp.775-791
    • /
    • 2016
  • The indirect tensile strengths (ITSs) of different cemented paste backfill mixes with different curing times were determined by considering crack initiation and fracture toughness concepts under different loading conditions of steel loading arcs with various contact angles, flat platens and the standard Brazilian test jaw. Because contact area of the ITS test discs developes rapidly and varies in accordance with the deformability, ITSs of curing materials were not found convenient to determine under the loading apparatus with indefinite contact angle. ITS values increasing with an increase in contact angle can be measured to be excessively high because of the high contact angles resulted from the deformable characteristics of the soft paste backfill materials. As a result of the change of deformation characteristics with the change of curing time, discs have different contact conditions causing an important disadvantage to reflect the strength change due to the curing reactions. In addition to the experimental study, finite element analyses were performed on several types of disc models under various loading conditions. As a result, a comparison between all loading conditions was made to determine the best ITSs of the cemented paste backfill materials. Both experimental and numerical analyses concluded that loading arcs with definite contact angles gives better results than those obtained with the other loading apparatus without a definite contact angle. Loading arcs with the contact angle of $15^{\circ}$ was found the most convenient loading apparatus for the typical cemented paste backfill materials, although it should be used carefully considering the failure cracks for a valid test.