Browse > Article
http://dx.doi.org/10.12989/gae.2016.10.6.775

Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus  

Komurlu, Eren (Department of Mining Engineering, Karadeniz Technical University)
Kesimal, Ayhan (Department of Mining Engineering, Karadeniz Technical University)
Demir, Serhat (Department of Civil Engineering, Karadeniz Technical University)
Publication Information
Geomechanics and Engineering / v.10, no.6, 2016 , pp. 775-791 More about this Journal
Abstract
The indirect tensile strengths (ITSs) of different cemented paste backfill mixes with different curing times were determined by considering crack initiation and fracture toughness concepts under different loading conditions of steel loading arcs with various contact angles, flat platens and the standard Brazilian test jaw. Because contact area of the ITS test discs developes rapidly and varies in accordance with the deformability, ITSs of curing materials were not found convenient to determine under the loading apparatus with indefinite contact angle. ITS values increasing with an increase in contact angle can be measured to be excessively high because of the high contact angles resulted from the deformable characteristics of the soft paste backfill materials. As a result of the change of deformation characteristics with the change of curing time, discs have different contact conditions causing an important disadvantage to reflect the strength change due to the curing reactions. In addition to the experimental study, finite element analyses were performed on several types of disc models under various loading conditions. As a result, a comparison between all loading conditions was made to determine the best ITSs of the cemented paste backfill materials. Both experimental and numerical analyses concluded that loading arcs with definite contact angles gives better results than those obtained with the other loading apparatus without a definite contact angle. Loading arcs with the contact angle of $15^{\circ}$ was found the most convenient loading apparatus for the typical cemented paste backfill materials, although it should be used carefully considering the failure cracks for a valid test.
Keywords
tensile strength; indirect tensile strength test; splitting method; Brazilian test; paste backfill; finite element analyses;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Komurlu, E., Kesimal, A. and Ercikdi, B. (2013), "An investigation of uncemented paste backfill applicability", Proceedings of the 23th International Congress and Exhibition of Tukey (IMCET 2013), The Chamber of Mining Engineers of Turkey, Antalya, Turkey, April, pp. 1017-1024
2 Komurlu, E., Kesimal, A. and Demir, S. (2015), "An experimental and numerical study on determination of indirect (Splitting) tensile strength of rocks under various load apparatus", Can. Geotech. J., 53(2), 360-372. DOI: 10.1139/cgj-2014-0356   DOI
3 Kourkoulis, S.K. and Markides, C.F. (2012), "The Brazilian disc under parabolically varying load:Theoretical and experimental study of the displacement field", Int. J. Solid. Struct., 49(7-8), 959-972.   DOI
4 Kourkoulis, S.K., Markides, C.F. and Hemsley, J.A. (2013), "Frictional stresses at the disc-jaw interface during the standardized execution of the Brazilian disc test", Acta Mechanica, 224(2), 255-268.   DOI
5 Krishnayya, A.V.G. and Eisenstein, Z. (1974), "Brazilian tensile test for soils", Can. Geotech. J., 11(4), 632-642.   DOI
6 Li, L. and Aubertin, M. (2002), "A crack-induced stress approach to describe the tensile strength of transversely isotropic rocks", Can. Geotech. J., 39(1), 1-13.   DOI
7 Markides, C.F. and Kourkoulis, S.K. (2013), "Naturally accepted boundary conditions for the Brazilian Disc Test and the corresponding stress field", Rock Mech. Rock Eng., 46(5), 959-980.   DOI
8 Markides, C.F., Pazis, D.N. and Kourkoulis, S.K. (2010), "Closed Full-Field Solutions for Stresses and Displacements in the Brazilian Disc under Distributed Radial Load", Int. J. Rock Mech. Min. Sci., 47(2), 227-237.   DOI
9 Markides, C.F., Pazis, D.N. and Kourkoulis, S.K. (2012), "The Brazilian disc under non-uniform distribution of radial pressure and friction", Int. J. Rock Mech. Min. Sci., 50, 47-55.   DOI
10 Muskhelishvili, N.I. (1963), Some Basic Problems in Mathematical Theory of Elasticity, Noordhoff International Publishing, Leyden, IL, USA.
11 Ulusay, R. and Gokceoglu, C. (1997), "The modified block punch index test", Can. Geotech. J., 34(6), 991-1001.   DOI
12 Ulusay, R. and Hudson, J.A. (Eds.) (2007), The Blue Book - The Complete ISRM Suggested Methods for Rock Characterisation, Testing and Monitoring: 1974-2006, ISRM & Turkish National Group of ISRM, Ankara, Turkey.
13 Willam, K.J. and Warnke, E.P. (1974), Constitutive Model for the Triaxial Behaviour of Concrete, IABSE, Report No. 19; Bergamo, Italy, pp. 1-30.
14 Yilmaz, E., Belem, T., Bussiere, B. and Benzaazoua, M. (2011), "Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills", Cement Concrete Compos., 33(6), 702-715.   DOI
15 Yilmaz, E., Belem, T. and Benzaazoua, M. (2015), "Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions", Eng. Geol., 185, 52-62.   DOI
16 Yu, Y., Yin, J. and Zhong, Z. (2006), "Shape effects in the Brazilian tensile strength test and a 3D FEM correction", Int. J. Rock Mech. Min. Sci., 43(4), 623-627.   DOI
17 Barla, G. and Innaurato, N. (1973), "Indirect tensile testing of anisotropic rocks", Rock Mech. Rock Eng., 5(4), 215-230.
18 Akazawa, T. (1943), "New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part 1)", J. Japan Soc. Civil Eng., 29, 777-787.
19 Aono, Y., Tani, K., Okada, T. and Sakai, M. (2012), "Failure mechanism of the specimen in the splitting tensile strength test", Proceedings of the 7th Asian Rock Mechanics Symposium, Seoul, South Korea, October, pp. 615-623.
20 Ashour, H.A. (1988), "A compressive strength criterion for anisotropic rock materials", Can. Geotech. J., 25(2), 233-237.   DOI
21 Carneiro, F.L.L.B. (1943), "A new method to determine the tensile strength of concrete", Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules, Brazil, September, pp. 126-129. [In Portuguese]
22 Chen, R. and Stimpson, B. (1993), "Interpretation of indirect tensile strength when moduli of deformation in compression and in tension are different", Rock Mech. Rock Eng., 26(2), 183-189.   DOI
23 Emad, M.Z., Mitri, H. and Kelly C. (2015), "State-of-the-art review of backfill practices for sublevel stoping system", Int. J. Min. Reclam. Environ., 29(6), 544-556. DOI: 10.1080/17480930.2014.889363   DOI
24 Erarslan, N. and Williams, D.J. (2012), "Experimental, numerical and analytical studies on tensile strength of rocks", Int. J. Rock Mech. Min. Sci., 49, 21-30.   DOI
25 Erarslan, N., Liang, Z.Z. and Williams. D.J. (2012), "Experimental and Numerical Studies on Determination of Indirect Tensile Strength of Rocks", Rock Mech. Rock Eng., 45(5), 739-751.   DOI
26 Fairbairn, E.M.R. and Ulm, J.F. (2002), "A tribute to Fernando L.L.B. Carneiro (1913-2001) Engineer and Scientist who invented the Brazilian Test", Mater. Struct., 35, 195-196.
27 Fairhurst, C. (1964), "On the validity of the 'Brazilian' test for brittle materials", Int. J. Rock Mech. Min. Sci., 1(4), 535-546.   DOI
28 Hobbs, D.W. (1964), "The tensile strength of rocks", Int. J. Rock Mech. Min. Sci., 1(3), 385-396.   DOI
29 ISRM (1978), "International society for rock mechanics suggested methods for determining tensile strength of rock materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 99-103.   DOI
30 Hondros, G. (1959), "The evaluation of Poisson's ratio and the modulus of materials of a low tensile resistance by Brazilian (indirect tensile) test with particular reference to concrete", Aust. J. Appl. Sci., 10(3), 243-268.
31 Jaeger, J.C. and Cook, N.G.W. (1976), Fundamentals of Rock Mechanics, Chapman and Hall, London, UK.
32 Jianhong, Y. and Wu, F.Q. and Sun, J.Z. (2009), "Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads", Int. J. Rock Mech. Min. Sci., 46(3), 568-576.   DOI
33 Kesimal, A., Yilmaz, E. and Ercikdi, B. (2004), "Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents", Cement Concrete Res, 34(10), 1817-1822.   DOI
34 Komurlu, E. and Kesimal, A. (2012), "Jaw effects on indirect tensile strength test disc failure mechanism", Proceedings of the 7th Asian Rock Mechanics Symposium, Seoul, South Korea, October, pp. 624-637.
35 Komurlu, E. and Kesimal, A. (2015a), "Evaluation of indirect tensile strength of rocks using different types of jaws", Rock Mech. Rock Eng., 48(4), 1723-1730.   DOI
36 Komurlu, E. and Kesimal, A. (2015b), "Sulfide-rich mine tailings usage for short-term support purposes: An experimental study on paste backfill barricades", Geomech. Eng., Int. J., 9(2), 195-205.   DOI