DOI QR코드

DOI QR Code

계면요소를 이용한 경량철근콘크리트 보의 전단거동해석

Analysis of Shear Behavior of Reinforced ALWAC Beam Using Interface Elements

  • 이인규 (한국철도기술연구원 궤도토목연구본부) ;
  • 김우 (전남대학교 건설지구환경공학부)
  • 투고 : 2005.05.27
  • 심사 : 2005.11.22
  • 발행 : 2006.01.31

초록

전단보강이 없는 철근콘크리트 보의 파괴특성의 정의는 현재까지는 어려운 주제이다. 과거의 본질적인 실험적 연구와 이론적인 노력에도 불구하고 전단파괴의 특성은 완전히 이해되지 않았다. 따라서 보의 설계시 전단강도 산정에 반경험식의 적용이 되어오고 있다. 최근의 다양한 건설환경 하에서 고성능 콘크리트의 수요가 증가하고 있으며 내구성을 포함한 가격경쟁력이 뛰어난 재료들이 필요하며 특히 경량철근콘크리트의 경우에는 경량이면서 적절한 강도를 가지고 온도와 소음차단에 효과적이기 때문에 주요부재 및 구조물에 응용할 수 있다. 이러한 장점에도 불구하고 그의 극한파괴거동에 대해서는 다소 잘 정리되어 있지 않다. 이러한 이유로 본 연구에서는 경량철근콘크리트 보의 전단거동을 살펴보며 그의 특이성을 기존 실험적 연구와 해석적 연구를 통해 비교, 검토하고자 하였다.

A challenging topic was and still is the failure behavior of concrete beams without shear reinforcement. In spite of substantial experimental and theoretical efforts in the past, the mechanism of shear failure is not entirely understood. ALWAC is of importance to the current construction industry. Most of present concrete research focuses on high performance concrete, by which in meant a cost effective material that satisfies demanding performance requirements, including durability. The advantages of ALWAC are its reduced mass and improved thermal and acoustic insulation properties, while maintaining adequate strength. In spite of these advantages, its ultimate failure behavior has not been well defined for adequate design process. This paper will investigate mainly the shear behavior of reinforced ALWAC beam without web reinforcements numerically with experimental evidences.

키워드

참고문헌

  1. 김 우, 정제평, 김대중(2004) 전단이 지배하는 RC부재의 새로운 트러스모델링기법 연구(전편)-기본개념 유도를 중심으로. 한국콘크리트학회논문집, 한국콘크리트학회, 제 16권, 제6호, pp785-794
  2. Basche, H.D. and Keller, C. (2003) Analysis of Wedge Splitting Tests and Shear Beam made of ALWAC using Interface Elements. LACER 8, University of Leipzig, Leipzig, Germany
  3. Bazant, Z. and Kazemi, M. (1991) Size Effect on Diagonal Shear Failure of Beams without Stirrups. ACI Structural Journal, May pp.268-275
  4. Carol, I., Lopez, C. and Roa, O. (2001) Micromechanical analysis of quasi brittle materials using fracture-based interface elements. Int'l J. of Numerical Methods in Engineering, Vol. 52, pp.193-215 https://doi.org/10.1002/nme.277
  5. Dept. of CEAE and Dept. of AE (2004) FEM-C++: A totally objected oriented program for finite element modeling. User's Manual, University of Colorado at Boulder, Boulder, USA
  6. Faust, T. (2003) Supplements to MC-90 for Lightweight Aggregate Concrete. LACER 8, University of Leipzig, Leipzig, Germany
  7. Keller, C. (2004) Querkrafttragverhalten von Biegebauteilen. Ph.D. dissertation, University of Leipzig, Leipzig, Germany
  8. Kim, W. (1987) Shear-Critical Cracks in Reinforced Concrete Beams without Web Reinforcement: Their Initiation and Propagation. Ph.D. dissertation, Cornell University, Ithaca, USA
  9. Mehlhorn, G and Keuser, M. (1985) Isoparametric contact elements for analysis of reinforced concrete. Finite Element Analysis of Reinforced Concrete Structures, Tokyo, ASCE
  10. NORM prEN 1992-1-1 (2002) Eurocode 2: Design of concrete structures - Part I: General rules and rules for buildings. Germany
  11. Rhee, I. and Roh, Y.S. (2005) Cohesive crack model of concrete materials. Journal of Korea Concrete Institutes, Vol. 17, No.6, In press
  12. Willam, K., Rhee, I. and Shing, B. (2004) Interface damage model for thermo-mechanical degradation of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp.3327-3350 https://doi.org/10.1016/j.cma.2003.09.020