• Title/Summary/Keyword: split-plot

Search Result 209, Processing Time 0.023 seconds

Pooling Variance Tests Using Expected Mean Square in Split-Plot Designs (분할법에서 EMS알고리즘을 이용한 풀링분산검정)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2008
  • The research proposes three ANOVA(Analysis of Variance) tests using expected mean square(EMS) algorithms in various split-plot designs. The variance tests consist of Never-Pool test, Sometimes-Pool test and Always-Pool test. This paper also presents two EMS algorithms such as standard method and easy method. These algorithms are useful to make a decision rule for pooling. Numerical examples are illustrated for various split-plot designs such as split-plot designs, split-split-plot designs, repetition split-plot designs, and nested designs. Pragmatically, the results are summarized and compared with popular ANOVA spreadsheets and data model equations.

Calculation of Gauge Precisions by Measurement Experimental Design for Split Split Plots (2단분할법 측정 실험계획에 의한 게이지 정밀도 산정)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.649-657
    • /
    • 2009
  • The paper presents the measurement split split-plot models for saving the time and cost. The split split-plot designs developed are efficiently used to estimating the gauge R&R(Reproducibility & Repeatability) when the completely randomized design of all factors(such as high pressure and temperature) is expensive and time consuming. The models studied include three split split-plots considering the type of experimental units.

  • PDF

Generation of Split Plot Design of Fixed Factors by Random, Crossed, and Nested Models (랜덤, 교차, 지분인자 모형에 의한 고정인자 분할구 실험설계의 생성)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.487-493
    • /
    • 2011
  • The paper reviews three Split Plot Designs (SPDs) of fixed factors, and those are SPD (RCBD, RCBD), SPD (CRD, RCBD) and SBD (Split Block Design). RCBD (Randomized Complete Block Design) and CRD (Completely Randomized Design) are used to deploy whole plot and sub plot. The models explained in this study are derived from random, crossed and nested models.

  • PDF

Application of ANOVA and DOE by Using Randomized Orders and Geometrical Properties (랜덤화 순서와 기하학적 특성을 고려한 분산분석과 실험계획의 응용방안)

  • Choe, Seong-Un
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.277-292
    • /
    • 2012
  • The research presents an application of Balanced ANOVA (BANOVA) by utilizing randomized orders for various Split-Plot Designs (SPDs) which include two cell designs, split-plot with one-way HTC (Hard to Control) factor, split-plot with two-way HTC factor, split-split-plot design and nested design. In addition, four MINITAB examples of 2-level split-plot designs based on the number of blocks and the type of whole-plots are presented for practitioners to obtain comprehensive understanding. Furthermore, the geometrical interrelated properties among three typical Designs of Experiments (DOE), such as Factorial Design (FD), Response Surface Design (RSD), and Mixture Design (MD) are discussed in this paper.

  • PDF

An Analysis of Variance Procedure for the Split-Plot Design Using SPSS Syntax Window

  • Choi Byoung-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • In conducting the analysis of variance for the split-plot design using the statistical package SPSS, users including statisticians are faced with difficulties because of no appropriate example in the SPSS applications guide book. In this paper, therefore, we present an analysis of variance procedure for the split-plot design using SPSS syntax window.

Carrying Out the Method of Steepest Ascent in a Response Surface Experiment with Split-Plot Structure (분할법 구조를 갖는 반응표면 실험에서 최대경사법 수행 방법)

  • Lee, Jong-Seong
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.27-31
    • /
    • 2011
  • In many industrial experiments, some practical constraints often force factors in an experiment to be much harder to change than others. Such an experiment involves randomization restrictions and it can be thought of as split-plot experiment. This paper investigates the path of steepest ascent/descent within a split-plot structure. A method is proposed for calculating the coordinates along the path.

  • PDF

Analysis of Measurement Precisions Using Measurement Experimental Design for Split Plot (단일분할법 측정 실험계획을 이용한 정밀측정도 분석)

  • Choi, Sung-Woon;You, Jung-Sang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.223-227
    • /
    • 2009
  • The study presents two measurement split-plot models with a restricted randomization to save cost and time. Split-plot models are used to handle HTCM (Hard To Control Measurement) factors such as high temperature and long-time catalyst control. The models developed are represented by the processes for estimating the measurement precisions, that is, gauge R&R. The study also introduces three-step procedures to indentify resolution, improve R&R reduction, and evaluate the precision effect.

Power comparison for 3×3 split plot factorial design (3×3 분할요인모형의 검정력 비교연구)

  • Choi, Young Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.143-152
    • /
    • 2017
  • Restriction of completely randomization within a block can be handled by a split plot factorial design splitted by several plots. $3{\times}3$ split plot factorial design with two fixed main factors and one fixed block shows that powers of the rank transformed statistic for testing whole plot factorial effect and split plot factorial effect are superior to those of the parametric statistic when existing effect size is small or the remaining effect size is relatively smaller than the testing factorial effect size. Powers of the rank transformed statistic show relatively high level for exponential and double exponential distributions, whereas powers of the parametric and rank transformed statistic maintain similar level for normal and uniform distributions. Powers of the parametric and rank transformed statistic with two fixed main factors and one random block are respectively lower than those with all fixed factors. Powers of the parametric andrank transformed statistic for testing split plot factorial effect with two fixed main factors and one random block are slightly lower than those for testing whole plot factorial effect, but powers of the rank transformed statistic show comparative advantage over those of the parametric statistic.

A mixed model for repeated split-plot data (반복측정의 분할구 자료에 대한 혼합모형)

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • This paper suggests a mixed-effects model for analyzing split-plot data when there is a repeated measures factor that affects on the response variable. Covariance structures are discussed among the observations because of the assumption of a repeated measures factor as one of explanatory variables. As a plausible covariance structure, compound symmetric covariance structure is assumed for analyzing data. The restricted maximum likelihood (REML)method is used for estimating fixed effects in the model.

Projection analysis for split-plot data (분할구자료의 사영분석)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.335-344
    • /
    • 2017
  • This paper discusses a method of analyzing data from split-plot experiments by projections. The assumed model for data has two experimental errors due to two different experimental sizes and some random components in treatment effects. Residual random models are constructed to obtain sums of squares due to random effects. Expectations of sums of squares are obtained by Hartley's synthesis. Estimable functions of fixed effects are discussed.