• 제목/요약/키워드: spinel phase

검색결과 238건 처리시간 0.024초

Structural, Magnetic, and Optical Studies on Normal to Inverse Spinel Phase Transition in FexCo3-xO4 Thin Films

  • Kim, Kwang-Joo;Kim, Hee-Kyung;Park, Young-Ran;Ahn, Geun-Young;Kim, Chul-Sung;Park, Jae-Yun
    • 한국자기학회지
    • /
    • 제15권2호
    • /
    • pp.96-99
    • /
    • 2005
  • Phase transition from normal- to inverse-spinel structure has been observed for $Fe_xCo_{3-x}O_4$ thin films as the Fe composition (x) increases from 0 to 2. The samples were fabricated as thin films by sol-gel method on Si(100) substrates. X-ray diffraction measurements revealed a coexistence of two phases, normal and inverse spinel, for $0.76{\le}x{\le}0.93$. The normal-spinel phase is dominant for $x{\le}0.55$ while the inverse-spinel phase for $x{\ge}l.22$. The cubic lattice constant of the inverse-spinel phase is larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. X-ray photoelectron spectroscopy measurements revealed that both $Fe^{2+}$ and $Fe^{3+}$ ions exist with similar strength in the x=0.93 sample. Conversion electron $M\ddot{o}ssbauer$ spectra measured on the same sample showed that $Fe^{2+}$ ions prefer the octahedral $Co^{3+}$ sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates the dominance of the normal spinel phase for low x in which $Fe^{3+}$ ions tend to substitute the octahedral sites.

Oxidative Dimerization of Methane over Lead Aluminate Spinel Catalysts

  • 장종산;박상언
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권12호
    • /
    • pp.1148-1152
    • /
    • 1995
  • Oxidative dimerization of methane to C2-hydrocarbons was performed over lead aluminate spinel catalysts. These spinel catalysts were prepared by co-precipitation, aerogel, and sol-gel methods. The active phase of lead aluminate oxides was found to be PbAl2O4 spinel. The activities of the catalysts were strongly dependent on the preparation method as well as the composition of PbAl2O4 phase. The proper oxygen mobility of PbAl2O4 spinel oxides appeared to be important to get high catalytic activity and selectivity for C2-hydrocarbon formation.

SHS 법에 의한 Magnesia-Alumina Spinel 제조와 특성 (Preparation and Properties of Magnesia-Alumina Spinel by SHS)

  • 최태현;전병세
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.235-241
    • /
    • 1996
  • Self-Propagating high temperature synthesis(SHS) technique was used to synthesize the spinel phase of MgAl2O from MgO and Al powder. Processing factors such as mixing time preheating temperature and ignition catalyst were varied to determine the optimum condition to form MgAl2O4 phase. The reaction products were heat treated at the temperature range of 120$0^{\circ}C$ and 150$0^{\circ}C$. to observe phase transformation of unreacted materials. Processing factors such as 48 hrs-mixing 80$0^{\circ}C$-preheating and 20wt% KNO3-ignition catalyst were effective of the formation of MgAl2O spinel. An activation energy 49.7kcal/mol. was calculated to form a MaAl2O4 spinel from unreacted materials.

  • PDF

카올리나이트의 상전이반응 과정 연구 (An Investigation of the Transformation Sequence from Kaolinite to Mullite)

  • 이수정;김윤중;문희수
    • 한국광물학회지
    • /
    • 제11권1호
    • /
    • pp.32-44
    • /
    • 1998
  • The transformation sequence of kaolinite to mullite is examined with new electron diffraction data obtained mainly by an energy filtering transmission electron microscope. Kaolinite is transformed finally into mullite and cristobalite through several steps of continuous reactions by heating, which result in metakaolinite, microcrystalline spinel-type phase and amorphous silica. Metakaolinite maintains a short-range order in its structure ven at $920^{\circ}C$. Spinel phase results from a topotactictransformation of metakaolinite apart from the breakdown of metakaolinite structure. the first strong exothermic peak on DTA curve is mainly due to the extraction of amorphous silica from metakaolinite and the gradual nucleation of mullite. Metakaolinite decomposes around$ 940^{\circ}C$ to mullite that doesn't show a clear crystallographic relationship to the parent metakaolinite structure. However, spinel phase produced previously is maintained. The initially formed spinel and mullite phases are suggested to be Al-rich, but progressively gain Si in their structures at higher temperatures. Spinel phase decomposes completely through a second weak exothermic reaction promoting the growth of mullite, and crystallization of amorphous silica to cristobalite.

  • PDF

CaO-Al$_2$O$_3$-SiO$_2$계 슬래그와 스피넬의 반응에 미치는 스피넬중의 MgO함유량의 영향 (Effects of MgO content of Spinel on the Reaction of Spinel with CaO-Al$_2$O$_3$-SiO$_2$ Slag)

  • 조문규;홍기곤
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.410-416
    • /
    • 1999
  • The reactivity of three kinds of spinels which CaO-Al2O3-SiO2 slag was investigated in terms of mineral phases and microstructures. New crystal products were not formed by reaction of 12CaO.7Al2O3 in the slag with spinels and free MgO components was preferenctially dissolved into slag for MgO-rich spinel and stoichiometric spinel. Meanwhile mineral phase was changed from 12CaO.7Al2O3 to CaO.Al2O3 to CaO.2Al2O3 finally to CaO.6Al2O3 having high melting point for Al2O3 -rich spinel. The Fe-oxide component of the slag was taken up by only stoichiometric spinel grains within the spinel clinker and the trapped amount of Fe-oxide was independent of MgO content of MgO in spinel clinker the more th resistance to slag corrosion but the less resistance to slag penetration.

  • PDF

알콜탈수법에 의한 Mn-Zn Ferrite 분체제조 및 소결특성 (Synthesis of Mn-Zn Ferrite Powder by Alcoholic Dehydration and Properties of Sintered Body)

  • 이대희;김창현;이병교
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.843-849
    • /
    • 1998
  • Fine powders of Mn-Zn ferrite were prepared by the alcoholic dehydration method and densification beha-vior of synthesized powder was investigated. The concentration and pH of solution for optimal precipitation was 0.4M and 2.5 respectively. The spinel single phase metastable state was formed by thermal decom-position of precipitate and then spinel phase was disintegrated into hematite and spinel {{{{ { { ZnFe}_{2 }O }_{4 } }} at 600$^{\circ}C$ With increase of temperature reaction of solid solution between hematite and spinel was proceeded and resulted in the spinel single phase (Mn, Zn Fe){{{{ { {Fe }_{2 }O }_{4 } }} On account of high reactivity of uncalcined powders densification started at 200$^{\circ}C$ lower and completed at 50$^{\circ}C$ lower in comparison with calcined powders.

  • PDF

Structural and Magnetic Properties of Dilute Spinel Ferrites: Neutron Diffractometry and Magnetometry Investigations

  • Mamiya, H.;Terada, N.;Kitazawa, H.;Hoshikawa, A.;Ishigaki, T.
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.134-139
    • /
    • 2011
  • Magnetic properties of highly zinc-substituted manganese ferrites are discussed on the basis of cation distribution. High throughput neutron powder diffractometry indicates that the prepared samples possess a nearly normal spinel structure, where the substitution of nonmagnetic zinc ions mainly causes the dilution of magnetic ions in the A-sublattice and consequently affects bond-randomness in the B-sublattice. On the other hand, the estimated occupancy of manganese ions in the B site indicates that random anisotropy effects due to local Jahn-Teller distortions gradually weaken with the substitution. Bulk magnetometry indicates that the substitution smears the transition from a paramagnetic phase to a soft-magnetic phase. Furthermore, at lower temperatures, such a soft-magnetic phase is destabilized and a magnetic glassy state appears. These features of the magnetic properties of dilute spinel ferrites are discussed from the viewpoint of the above-mentioned various types of disorders.

ZnO 바리스터 세라믹스의 미세구조와 상전이 (Microstructure and Phase Transition of ZnO Varistor Ceramics)

  • 김경남;한상목
    • 한국세라믹학회지
    • /
    • 제28권2호
    • /
    • pp.160-166
    • /
    • 1991
  • Microstructure and phase changes during the sintering of ZnO varistors were studied in ZnO-Bi2O3-CoO-Sb2O3 and ZnO-Bi2O3-CoO-Sb2O3-Cr2O3 systems using acanning electron microscopy (SEM) with an energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD) and differential thermal analysis (DTA). The spinel phase and the Bi2O3 phase were formed by the decomposition of the pyrochlore phase during heating. The spinel particles (2-4$\mu\textrm{m}$), which were formed both along ther grain boundaries and within the ZnO grain, were always found near the pyrochlore phase. Intergranular phases (Bi2O3 and pyrochlore) were precipitated from the liquid phase during cooling. The Bi2O3 phases were located at the triple (or multiple) point of the ZnO grains. Cr2O3 played a role in decreasing the formation temperature of the spinel phase and Bi2O3 phase during sintering, and inhibited the grain growth.

  • PDF

고온에서 스피넬의 올리빈으로 역상변이 연구 (A Study of Back Transformation of Spinel to Olivine at High Temperature)

  • 김영호
    • 한국광물학회지
    • /
    • 제18권4호통권46호
    • /
    • pp.237-248
    • /
    • 2005
  • [ $Mg_{2}SiO_{4}{-}$ ]스피넬에서 올리빈으로의 역상변이에 대한 고온 X-선 회절실험 결과, 진공상태에서 가열하였을 때 상변이가 일어나며, 일정한 온도에서 스피넬상으로부터 올리빈상이 시간이 경과하면서 성장하는 것으로 보아 상변이 메커니즘은 '핵생성 및 성장' 형태인 것으로 판단된다. 스피넬 상으로부터 올리빈 상으로 역상변이 할 때의 활성화 에너지를 구하기 위해 $Mg_{2}SiO_{4}{-}$스피넬 시료에 대한 상변이 실험을 진공 및 고온($1023\∼1116\;k$)에서 시행하였다. 올리빈 상에 대해 '주어진 시간에 따른 비분율법'을 이용하여 활성화 에너지 값을 결정하였다. 아브라미 방정식을 이용하여 계산한 결과, n값은 대체로 온도가 증가함에 따라 매우 넓은 영역에서 동반 상승하는데, 이러한 현상은 '핵생성 및 성장' 메커니즘이 아마도 온도에 종속적이지 않느냐 하는 것을 제시해주고 있다. 상대적으로 낮은 온도에서는 $Mg_{2}SiO_{4}{-}$스피넬은 핵이 생성된 자리가 포화된 후, 새로운 결정상이 표면에서 성장을 시작하고 시간이 지남에 따라 내부 쪽으로 옮아가는 것으로 판단된다. 그러나 고온에서, 성장은 핵이 생성된 자리가 포화되고 난 후 표면뿐만 아니라, 내부에서도 동시에 시작되는 것으로 보인다.

습식합성에 의한 Mn-Zn Ferrite의 생성반응에 관한 연구 (Formation Reaction of Mn-Zn Ferrite by Wet Process)

  • 이경희;이병하;허원도;황우연
    • 한국세라믹학회지
    • /
    • 제30권1호
    • /
    • pp.25-33
    • /
    • 1993
  • Formation reaction of Mn-Zn ferrite depending on various synthetic conditions of wet process was investigated using FeCl2.nH2O(n≒4), MnCl2.4H2O, ZnCl2 as starting materials. A stable intermediate precipitate was formed by the addition of H2O2. And the precipitate was hard to transform to spinel phase of Mn-Zn Fe2O4. Single phase of Mn-Zn Fe2O4 spinel was obtained above 8$0^{\circ}C$ reaction temperature. The powder had spherical particle shape and 0.02~0.05${\mu}{\textrm}{m}$ particle size. Fe(OH)2 solid solution, -FeO(OH) solid solution, -FeOOH, Mn-Zn Fe2O4 spinel were formed with air flow rate 180$\ell$/hr. However, single phase of Mn-Zn Fe2O4 spinel with cubic particle shape and 0.1~0.2${\mu}{\textrm}{m}$ particle size was formed with synthetic conditions of 8$0^{\circ}C$ and 90 munutes. The particle shape of the -FeOOH was needle-like.

  • PDF