A Study of Back Transformation of Spinel to Olivine at High Temperature

고온에서 스피넬의 올리빈으로 역상변이 연구

  • Kim Young-Ho (Department of Earth and Environment Science and the Research Institute of Natural Sciences, Gyeongsang National University)
  • 김영호 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Published : 2005.12.01

Abstract

Results from in-situ high temperature X-ray diffraction measurements show that $Mg_{2}SiO_{4}{-}$spinel converts back to olivine phase only when heated in vacuum, and that at some high temperature, the olivine phase grows with time at the expense of the spinel phase strongly suggesting a 'nucleation and growth' type transition. In order to obtain the activation energy of spinel-olivine back transformation, kinetics measurements were performed on $Mg_{2}SiO_{4}{-}$spinel in vacuum at high temperatures between 1023 and 1116 K. Activation energy was determined using 'time to a given fraction method'. By employing the Avrami equation, it was found that n values generally increase with increasing temperature in a wide range implying that the nucleation and growth mechanism is probably temperature-dependent. It is likely that in spinel, at a relatively lower transformation temperature, after nucleation sites saturated, the growth of the new phase starts on the surface and gradually moves inwards. At high temperatures, however, after nucleation sites saturated, the growth starts both on the surface as well as at the interior.

[ $Mg_{2}SiO_{4}{-}$ ]스피넬에서 올리빈으로의 역상변이에 대한 고온 X-선 회절실험 결과, 진공상태에서 가열하였을 때 상변이가 일어나며, 일정한 온도에서 스피넬상으로부터 올리빈상이 시간이 경과하면서 성장하는 것으로 보아 상변이 메커니즘은 '핵생성 및 성장' 형태인 것으로 판단된다. 스피넬 상으로부터 올리빈 상으로 역상변이 할 때의 활성화 에너지를 구하기 위해 $Mg_{2}SiO_{4}{-}$스피넬 시료에 대한 상변이 실험을 진공 및 고온($1023\∼1116\;k$)에서 시행하였다. 올리빈 상에 대해 '주어진 시간에 따른 비분율법'을 이용하여 활성화 에너지 값을 결정하였다. 아브라미 방정식을 이용하여 계산한 결과, n값은 대체로 온도가 증가함에 따라 매우 넓은 영역에서 동반 상승하는데, 이러한 현상은 '핵생성 및 성장' 메커니즘이 아마도 온도에 종속적이지 않느냐 하는 것을 제시해주고 있다. 상대적으로 낮은 온도에서는 $Mg_{2}SiO_{4}{-}$스피넬은 핵이 생성된 자리가 포화된 후, 새로운 결정상이 표면에서 성장을 시작하고 시간이 지남에 따라 내부 쪽으로 옮아가는 것으로 판단된다. 그러나 고온에서, 성장은 핵이 생성된 자리가 포화되고 난 후 표면뿐만 아니라, 내부에서도 동시에 시작되는 것으로 보인다.

Keywords

References

  1. Akaogi, M., Kojitani, H., Matsuzaka, K., Suzuki, T. and Ito, E. (1998) Postspinel transformations in the system $Mg_{2}SiO_{4}$-$Fe_{2}SiO_{4}$: Element partitioning, calorimetry and thermodynamic calculation, Prop. Earth. & Planet. Mat. at HP-HT. Geophysical Monograph, 101, AGU, 373-384
  2. Anderson, D.L. and Bass, J.D. (1986) Transition region of the Earth's upper mantle. Nature, 320 (6060), 321-328 https://doi.org/10.1038/320321a0
  3. Boland, J.N. and Uu, L.G. (1983) Olivine to spinel transformation in $Mg_{2}SiO_{4}$ via faulted structure. Nature, 303, 233-235 https://doi.org/10.1038/303233a0
  4. Brearley, A.J., Rubie, D.C. and Ito, E. (1992) Mechanism of the transformations between the ${\alpha}$, ${\beta}$ and ${\gamma}$ polymorphs of $Mg_2SiO_4$ at 15 GPa. Phys. Chem. Minerals, 18, 343-358.
  5. Burnley, P.C. and Green II, H.W. (1991) Faulting associated with olivine to spinel transformation in $Mg_{2}GeO_{4}$ and its implication for deep-focus earthquake. J. Geophys. Res., 96(B1), 425-443 https://doi.org/10.1029/90JB01937
  6. Cahn, J.W. (1956) The kinetics of grain boundary nucleated reactions. Acta Metall., 4, 449-459 https://doi.org/10.1016/0001-6160(56)90041-4
  7. Christian, J.W. (1975) The theory of transformation in metals and alloys. Pergamon Press, pp 433
  8. Dachille, F., Zeto, R.J. and Roy, R. (1963) Coesite and stishovite: stepwise reversal transformation. Science, 140, 991-993 https://doi.org/10.1126/science.140.3570.991
  9. Farver, J.R., Yund, R.A. and Rubie, D.C. (1993) Magnesium grain boundary diffusion in finegrained forsterite aggregates. AGU, EoS, 610-611
  10. Green II, H.W. and Burnley, P.C. (1989) A new self-organizing mechanism for deep-focus earthquakes. Nature, 341, 733-737 https://doi.org/10.1038/341733a0
  11. Hamaya, N. and Akimoto, S.J. (1982) Experimental investigation on the mechanism of olivine-spinel transformation: Growth of single crystal spinel from single crystal olivine in TEX>$Mg_{2}SiO_{4}$. High Pressure Research in Geophysics (eds. Akimoto, S. and Manghnani, M.H.), 373-389
  12. Kim, Y.H. and Na, K.C. (1994) High pressure X-ray diffraction study on a graphite using Synchrotron Radiation. J. Petrol. Soc. Korea, 3(1), 34-40
  13. Knittle, E. and leanloz, R. (1987) The activation energy of the back transformation of silicate perovskite to enstatite. High Pressure Research in Mineral Physics (eds. Manghnani, M.H. and Syono, Y.), 243-250
  14. Koch, M., Woodland, A.B. and Angel, R.J. (2004) Stability of spinelloid in the system $Mg_{2}SiO_{4}-Fe_{2}SiO_{4}-Fe_{3}O_{4} \; at \; 1100^{\circ}C$ and up to 10.5 GPa. Phys. Earth & Planet. Int., 143, 171-183 https://doi.org/10.1016/j.pepi.2003.06.001
  15. Lacam, A., Madon, M. and Poirier, J.P. (1980) Olivine glass and spinel formed in a laser heated diamond anvil high pressure cell. Nature, 288, 155-157 https://doi.org/10.1038/288155a0
  16. Ming, L.C., Kim, Y.H., Manghnani, M.H., Usha-Devi, S., Ito, E. and Xie, H.S. (1991) Back transformation and oxidation of $(Mg,Fe)_{2}SiO_{4}$ spinel at high temperature. Phys. Chem. Minerals, 18, 171-179
  17. Ming, L.C., Manghnani, M.H. and Balogh, J. (1987) Resistive heating in the diamond anvil cell under vacuum conditions. High Pressure Research in Mineral Physics (eds. Manghnani, M.H. and Syono, Y.), 69-74
  18. Morioka, M. (1981) Cation diffusion in olivine-II, Ni-Mg, Mn-Mg, Mg and Ca. Geochim. Cosmochim. Acta, 45, 1573-1580 https://doi.org/10.1016/0016-7037(81)90286-6
  19. Putnis, A. (1992) Introduction to Mineral Sciences. Cambridge Press, 309-331
  20. Remsburg, A.R., Boland, J.N., Gasparik, T. and Liebermann, R.C. (1988) Mechanism of the olivinespinel transformation in $CO_{2}SiO_{4}$. Phys. Chem. Minerals, 15, 498-506 https://doi.org/10.1007/BF00311131
  21. Remsburg, A.R. and Liebermann, R.C. (1991) A study of the polymorphic transformation in $CO_{2}SiO_{4}$. Phys. Chem. Minerals, 18, 161-170
  22. Rubie, D.C., Tsuchida, Y., Yagi, T., Utsumi, W., Kikegawa, T., Shimomura, O. and Brearley, J. (1990) An in-situ X-ray diffraction study of the kinetics of the $Ni_{2}SiO_{4}$ olivine-spinel transformation. J. Geophys. Res., 95(B10), 15829-15844 https://doi.org/10.1029/JB095iB10p15829
  23. Sung, C.M. and Burns, R.G. (1976) Kinetics of the olivine-spinel transition: Implication to deep-focus earthquake genesis. Earth Planet. Sci. Lett., 32, 165-170 https://doi.org/10.1016/0012-821X(76)90055-8
  24. Sung, C.M. (1979) Kinetics of olivine-spinel transition under high pressure and temperature: Experimental results and geophysical implications. High Pressure Science and Technology, Vol. 2, (eds. Timmehaus, K.D. and Barber, M.S.), 31-42
  25. Will, G. and Lauterjung, J. (1987) The kinetics of the pressure induced olivine-spinel phase transition $Mg_{2}GeO_{4}$. High Pressure Research in Mineral Physics (eds. Manghnani, M.H. and Syono, Y.), 177-186
  26. Wu, T.C., Bassett, W.A., Burnley, P.c. and Weathers, M.S. (1993) Shear promoted phase transition in $Fe_{2}SiO_{4}$ and $Mg_{2}SiO_{4}$ and the mechanism of deep Earthquakes. J. Geophys. Res. 98(B11), 19767-19776 https://doi.org/10.1029/93JB01614
  27. Vagi, T., Akaogi, M. Shimomura, O., Suzuki, T. and Akimoto, S.l. (1987) In-situ observation of the olivine-spinel phase transformation in $Fe_{2}SiO_{4}$ using synchrotron radiation. J. Geophys. Res., 92(87), 6207-6213 https://doi.org/10.1029/JB092iB07p06207