Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.2.134

Structural and Magnetic Properties of Dilute Spinel Ferrites: Neutron Diffractometry and Magnetometry Investigations  

Mamiya, H. (National Institute for Materials Science)
Terada, N. (National Institute for Materials Science)
Kitazawa, H. (National Institute for Materials Science)
Hoshikawa, A. (Ibaraki University)
Ishigaki, T. (Ibaraki University)
Publication Information
Abstract
Magnetic properties of highly zinc-substituted manganese ferrites are discussed on the basis of cation distribution. High throughput neutron powder diffractometry indicates that the prepared samples possess a nearly normal spinel structure, where the substitution of nonmagnetic zinc ions mainly causes the dilution of magnetic ions in the A-sublattice and consequently affects bond-randomness in the B-sublattice. On the other hand, the estimated occupancy of manganese ions in the B site indicates that random anisotropy effects due to local Jahn-Teller distortions gradually weaken with the substitution. Bulk magnetometry indicates that the substitution smears the transition from a paramagnetic phase to a soft-magnetic phase. Furthermore, at lower temperatures, such a soft-magnetic phase is destabilized and a magnetic glassy state appears. These features of the magnetic properties of dilute spinel ferrites are discussed from the viewpoint of the above-mentioned various types of disorders.
Keywords
oxide spinel; TOF neutron diffraction; diluted ferrimagnet; smeared phase transition; reentrant spin-glass;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 T. A. Anhoj, B. Bilenberg, B.n Thomsen, C. D. Damsgaard, H. K. Rasmussen, C. S. Jacobsen, J. Mygind, and S. Morup, J. Magn. Magn. Mater. 260, 115 (2003).   DOI   ScienceOn
2 R. Gerber and G. Elbinger, J. Phys. C 3, 1363 (1970).   DOI   ScienceOn
3 T. Ishigaki, A. Hoshikawa, M. Yonemura, T. Morishima, T. Kamiyama, R. Oishi, K. Aizawa, T. Sakuma, Y. Tomota, M. Arai, M. Hayashi, K. Ebata, Y. Takano, K. Komatsuzaki, H. Asano, Y. Takano, and T. Kasao, Nuclear Instruments and Methods in Physics Research A 600, 189 (2009).   DOI   ScienceOn
4 R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori, and T. Kamiyama, Nuclear Instruments and Methods in Physics Research A 600, 94 (2009).   DOI   ScienceOn
5 T. Hahn (Ed.), International Tables for Crystallography, 3rd Ed. Vol. A, Wiley, New York (1992).
6 R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).   DOI
7 S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, T. Yamamoto, and I. Tanaka, Phys. Rev. B 75, 174443 (2007).   DOI   ScienceOn
8 M. A. Hakim, M. Manjurul Haque, M. Huq, and P. Nordblad, Physica B 406, 48 (2011).   DOI   ScienceOn
9 H. Mamiya, M. Onoda, T. Furubayashi, J. Tang, and I. Nakatani, J. Appl. Phys. 81, 5289 (1997).   DOI   ScienceOn
10 S. Chikazumi, Physics of Ferromagnetism, Oxford Science Publications, New York (1997) pp. 134-160.
11 F. Scholl and K. Binder, Z. Phys. 39, 239 (1980).   DOI
12 M. Gabay and G. Toulouse, Phys. Rev. Lett. 47, 201 (1981).   DOI
13 S. Krupieka and P. Novak, Ferromagnetic Materials Vol. 3, Ed. E.P. Wohlfarth, North-Holland, Amsterdam (1982) Chapter 4.
14 J. S. Bettinger, R. V. Chopdekar, and Y. Suzuki, Appl. Phys. Lett. 94, 072505 (2009).   DOI   ScienceOn
15 H. Mamiya, N. Terada, T. Furubayashi, H. S. Suzuki, and H. Kitazawa, J. Magn. Magn. Mater. 322, 1561 (2010).   DOI
16 T. Takei, J. Magn. Soc. Jpn 2, 1 (1978).   DOI
17 A. Okita, F. Saito, S. Sasaki, T. Toyoda, and H. Koinuma, Jpn. J. Appl. Phys. 37, 3441 (1998).   DOI
18 S. Sakurai, S. Sasaki, M. Okube, H. Ohara, and T. Toyoda, Physica B 403, 3589 (2008).   DOI   ScienceOn
19 Jianjun Li, Hongming Yuan, Guodong Li, Yanju Liu, and Jinsong Leng, J. Magn. Magn. Mater. 322, 3396 (2010).   DOI   ScienceOn
20 J. L. Dormann and M. Nogues, J. Phys.: Condens. Matter 2, 1223 (1990).   DOI   ScienceOn