DOI QR코드

DOI QR Code

Structural and Magnetic Properties of Dilute Spinel Ferrites: Neutron Diffractometry and Magnetometry Investigations

  • Mamiya, H. (National Institute for Materials Science) ;
  • Terada, N. (National Institute for Materials Science) ;
  • Kitazawa, H. (National Institute for Materials Science) ;
  • Hoshikawa, A. (Ibaraki University) ;
  • Ishigaki, T. (Ibaraki University)
  • Received : 2011.01.25
  • Accepted : 2011.04.12
  • Published : 2011.06.30

Abstract

Magnetic properties of highly zinc-substituted manganese ferrites are discussed on the basis of cation distribution. High throughput neutron powder diffractometry indicates that the prepared samples possess a nearly normal spinel structure, where the substitution of nonmagnetic zinc ions mainly causes the dilution of magnetic ions in the A-sublattice and consequently affects bond-randomness in the B-sublattice. On the other hand, the estimated occupancy of manganese ions in the B site indicates that random anisotropy effects due to local Jahn-Teller distortions gradually weaken with the substitution. Bulk magnetometry indicates that the substitution smears the transition from a paramagnetic phase to a soft-magnetic phase. Furthermore, at lower temperatures, such a soft-magnetic phase is destabilized and a magnetic glassy state appears. These features of the magnetic properties of dilute spinel ferrites are discussed from the viewpoint of the above-mentioned various types of disorders.

Keywords

References

  1. J. S. Bettinger, R. V. Chopdekar, and Y. Suzuki, Appl. Phys. Lett. 94, 072505 (2009). https://doi.org/10.1063/1.3083555
  2. H. Mamiya, N. Terada, T. Furubayashi, H. S. Suzuki, and H. Kitazawa, J. Magn. Magn. Mater. 322, 1561 (2010). https://doi.org/10.1016/j.jmmm.2009.09.023
  3. T. Takei, J. Magn. Soc. Jpn 2, 1 (1978). https://doi.org/10.3379/jmsjmag.2.1
  4. S. Krupieka and P. Novak, Ferromagnetic Materials Vol. 3, Ed. E.P. Wohlfarth, North-Holland, Amsterdam (1982) Chapter 4.
  5. A. Okita, F. Saito, S. Sasaki, T. Toyoda, and H. Koinuma, Jpn. J. Appl. Phys. 37, 3441 (1998). https://doi.org/10.1143/JJAP.37.3441
  6. S. Sakurai, S. Sasaki, M. Okube, H. Ohara, and T. Toyoda, Physica B 403, 3589 (2008). https://doi.org/10.1016/j.physb.2008.05.035
  7. Jianjun Li, Hongming Yuan, Guodong Li, Yanju Liu, and Jinsong Leng, J. Magn. Magn. Mater. 322, 3396 (2010). https://doi.org/10.1016/j.jmmm.2010.06.035
  8. J. L. Dormann and M. Nogues, J. Phys.: Condens. Matter 2, 1223 (1990). https://doi.org/10.1088/0953-8984/2/5/014
  9. T. A. Anhoj, B. Bilenberg, B.n Thomsen, C. D. Damsgaard, H. K. Rasmussen, C. S. Jacobsen, J. Mygind, and S. Morup, J. Magn. Magn. Mater. 260, 115 (2003). https://doi.org/10.1016/S0304-8853(02)01237-4
  10. R. Gerber and G. Elbinger, J. Phys. C 3, 1363 (1970). https://doi.org/10.1088/0022-3719/3/6/019
  11. T. Ishigaki, A. Hoshikawa, M. Yonemura, T. Morishima, T. Kamiyama, R. Oishi, K. Aizawa, T. Sakuma, Y. Tomota, M. Arai, M. Hayashi, K. Ebata, Y. Takano, K. Komatsuzaki, H. Asano, Y. Takano, and T. Kasao, Nuclear Instruments and Methods in Physics Research A 600, 189 (2009). https://doi.org/10.1016/j.nima.2008.11.137
  12. R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori, and T. Kamiyama, Nuclear Instruments and Methods in Physics Research A 600, 94 (2009). https://doi.org/10.1016/j.nima.2008.11.056
  13. T. Hahn (Ed.), International Tables for Crystallography, 3rd Ed. Vol. A, Wiley, New York (1992).
  14. R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969). https://doi.org/10.1103/PhysRevLett.23.17
  15. S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, T. Yamamoto, and I. Tanaka, Phys. Rev. B 75, 174443 (2007). https://doi.org/10.1103/PhysRevB.75.174443
  16. M. A. Hakim, M. Manjurul Haque, M. Huq, and P. Nordblad, Physica B 406, 48 (2011). https://doi.org/10.1016/j.physb.2010.10.010
  17. H. Mamiya, M. Onoda, T. Furubayashi, J. Tang, and I. Nakatani, J. Appl. Phys. 81, 5289 (1997). https://doi.org/10.1063/1.364518
  18. S. Chikazumi, Physics of Ferromagnetism, Oxford Science Publications, New York (1997) pp. 134-160.
  19. F. Scholl and K. Binder, Z. Phys. 39, 239 (1980). https://doi.org/10.1007/BF01292669
  20. M. Gabay and G. Toulouse, Phys. Rev. Lett. 47, 201 (1981). https://doi.org/10.1103/PhysRevLett.47.201

Cited by

  1. Facile synthesis of zinc ferrite nanoparticles as non-lanthanide T1 MRI contrast agents vol.22, pp.27, 2012, https://doi.org/10.1039/c2jm30684k