• Title/Summary/Keyword: spinal implant

Search Result 42, Processing Time 0.024 seconds

Effect of Device Rigidity and Physiological Loading on Spinal Kinematics after Dynamic Stabilization : An In-Vitro Biomechanical Study

  • Chun, Kwonsoo;Yang, Inchul;Kim, Namhoon;Cho, Dosang
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.5
    • /
    • pp.412-418
    • /
    • 2015
  • Objective : To investigate the effects of posterior implant rigidity on spinal kinematics at adjacent levels by utilizing a cadaveric spine model with simulated physiological loading. Methods : Five human lumbar spinal specimens (L3 to S1) were obtained and checked for abnormalities. The fresh specimens were stripped of muscle tissue, with care taken to preserve the spinal ligaments and facet joints. Pedicle screws were implanted in the L4 and L5 vertebrae of each specimen. Specimens were tested under 0 N and 400 N axial loading. Five different posterior rods of various elastic moduli (intact, rubber, low-density polyethylene, aluminum, and titanium) were tested. Segmental range of motion (ROM), center of rotation (COR) and intervertebral disc pressure were investigated. Results : As the rigidity of the posterior rods increased, both the segmental ROM and disc pressure at L4-5 decreased, while those values increased at adjacent levels. Implant stiffness saturation was evident, as the ROM and disc pressure were only marginally increased beyond an implant stiffness of aluminum. Since the disc pressures of adjacent levels were increased by the axial loading, it was shown that the rigidity of the implants influenced the load sharing between the implant and the spinal column. The segmental CORs at the adjacent disc levels translated anteriorly and inferiorly as rigidity of the device increased. Conclusion : These biomechanical findings indicate that the rigidity of the dynamic stabilization implant and physiological loading play significant roles on spinal kinematics at adjacent disc levels, and will aid in further device development.

Efficacy of Spinal Implant Removal after Thoracolumbar Junction Fusion

  • Kim, Seok-Won;Ju, Chang-Il;Kim, Chong-Gue;Lee, Seung-Myung;Shin, Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.3
    • /
    • pp.139-142
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the efficacy of spinal implant removal and to determine the possible mechanisms of pain relief. Methods: Fourteen patient~with an average of 42 years (from 22 to 67 years) were retrospectively evaluated. All patients had posterior spinal instrumentation and fusion, who later developed recurrent back pain or persistent back pain despite a solid fusion mass. Patients' clinical charts, operative notes, and preoperative x-rays were evaluated. Relief of pain was evaluated by the Visual Analog Scale (VAS) pain change after implant removal. Clinical outcome using VAS and modified MacNab's criteria was assessed on before implant removal, 1 month after implant removal and at the last clinical follow-up. Radiological analysis of sagittal alignment was also assessed. Results: Average follow-up period was 18 months (from 12 to 25 months). There were 4 patients who had persistent back pain at the surgical site and 10 patients who had recurrent back pain. The median time after the first fusion operation and the recurrence of pain was 6.5 months (from 3 to 13 months). All patients except one had palpation pain at operative site. The mean blood loss was less than 100ml and there were no major complications. The mean pain score before screw removal and at final follow up was 6.4 and 2.9, respectively (p<0.005). Thirteen of the 14 patients were graded as excellent and good according to modified MacNab's criteria. Overall 5.9 degrees of sagittal correction loss was observed at final follow up, but was not statistically significant. Conclusion: For the patients with persistent or recurrent back pain after spinal instrumentation, removal of the spinal implant may be safe and an efficient procedure for carefully selected patients who have palpation pain and are unresponsive to conservative treatment.

Effects of Mitochondrial Reactive Oxygen Species on Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae-In;Park, A-Reum;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, and that mitochondria are the main source of ROS in the spinal dorsal horn. To investigate whether mitochondrial ROS can induce changes in membrane excitability on spinal substantia gelatonosa (SG) neurons, we examined the effects of mitochondrial electron transport complex (ETC) substrates and inhibitors on the membrane potential of SG neurons in spinal slices. Application of ETC inhibitors, rotenone or antimycin A, resulted in a slowly developing and slight membrane depolarization in SG neurons. Also, application of both malate, a complex I substrate, and succinate, a complex II substrate, caused reversible membrane depolarization and enhanced firing activity. Changes in membrane potential after malate exposure were more prominent than succinate exposure. When slices were pretreated with ROS scavengers such as phenyl-N-tert-buthylnitrone (PBN), catalase and 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), malate-induced depolarization was significantly decreased. Intracellular calcium above $100{\mu}M$ increased malateinduced depolarization, witch was suppressed by cyclosporin A, a mitochondrial permeability transition (MPT) inhibitor. These results suggest that enhanced production of spinal mitochondrial ROS can induce nociception through central sensitization.

Selection of polymer material in the design optimization of a new dynamic spinal implant

  • Monede-Hocquard, Lucie;Mesnard, Michel;Ramos, Antonio;Gille, Olivier
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.237-248
    • /
    • 2015
  • "Dynamic stabilization" systems have been developed in recent years to treat degenerative disorders of the spinal column. In contrast to arthrodesis (fusion), the aim here is to conserve intervertebral mobility to maximize comfort. When developing innovative concepts, many mechanical tests need to be carried out in order to validate the different technological solutions. The present study focuses on the B Dyn$^{(R)}$ "dynamic stabilization" device (S14$^{(R)}$ Implants, Pessac, France), the aim being to optimize the choice of polymer material used for one of the implant's components. The device allows mobility but also limit the range of movement. The stiffness of the ring remains a key design factor, which has to be optimized. Phase one consisted of static tests on the implant, as a result of which a polyurethane (PU) was selected, material no.2 of the five elastomers tested. In phase two, dynamic tests were carried out. The fatigue resistance of the B Dyn$^{(R)}$ system was tested over five million cycles with the properties of the polymer elements being measured using dynamic mechanical analysis (DMA) after every million cycles. This analysis demonstrated changes in stiffness and in the damping factor which guided the choice of elastomer for the B Dyn$^{(R)}$ implant.

The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments (Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.295-301
    • /
    • 2000
  • It is known that among many factors, relative micromotion at bone/implant interfaces can hinder bone ingrowth into surface pores of an implant. Loading conditions, mechanical properties of spinal materials, friction coefficients at the interfaces and geometry of spinal segments would affect the relative micromotion and spinal stability. A finite clement model of the human lumbar spine segments (L4-L5) was constructed to investigate the mechanical sensitivity at the interfaces between bone and cage. Relative micromotion. Posterior axial displacement. bone stress, cage stress and friction force were predicted in changes of friction coefficients, loading conditions. bone density and age-related material/geometric properties of the spinal segments. Relative micromotion (slip distance in a static loading means relative micromotion in routine activity) at the interfaces increased significantly as the mechanical properties of cancellous bone, annulus fibers or/and ligaments decrease or/and as the friction coefficient at the interfaces decreases. The contact normal force at the interfaces decreased as cancellous bone density decreases or/and as the friction coefficient increases A significant increase of slip distance at anterior annulus occurred with an addition of torsion to compressive preload. Relative micromotion decreased with an increase of disc area. In conclusion. relative micromotion, stress response. Posterior axial displacement and contact normal force are sensitive to the friction coefficient of the interfaces, bone density, loading conditions and age-related geometric/material changes.

  • PDF

The convergence effect of medical industry through stem cell implant treatment (줄기 세포 이식 치료를 통한 의료 산업적 융합효과)

  • Lee, Tae-Hoon
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.2
    • /
    • pp.61-65
    • /
    • 2018
  • Our experiment studied that grafted stem cells reduced behavioral deficiency in rodent animal models of clip compressive surgery inducing spinal cord infarction. Our research proved the effect of embryonic stem cells to the spinal cord infarction caused by compressing T9-10 with an aneurysm clip, focusing the application of grafted stem cells for reduction of infarction and regeneration of spinal cord nervous injury. Therefore, our research suggests manifest results that implantation of mouse embryonic stem cell could show behavioral improvement after severe spinal cord damage. Therefore, mouse embryonic stem cell (mESC) could be useful application for the method in neurological injury. Conclusively, stem cell implant therapy may enhance the effectiveness of stem cell implant for central nervous system injury.

Development and Evaluation for the Micro-Movement Structure of Interspinous (척추극돌간 미세움직임 재현 보형물의 개발 및 평가)

  • Park, Joon-Sik;Seo, Tae-Il;Bae, Jong-Suk;Yoon, Gil-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.127-131
    • /
    • 2006
  • Existing orthopedic implants such as pedicle screw and spinal cage were designed to fix the spinal structure. But, nowadays, physicians want to rehabilitate there original functions. To achieve this request, we studied micro-movable structure for interspinous. As a first step, we designed interspinous structure by 3D CAD to join each spinous processes. Next, we simulate it with various factors such as the thickness of micro-movement structure and the design of clip. At last, we performed static compressive test to satisfy the failure load of 339N and dynamic endurance test of 1.2M cycle. As a result, we developed interspinous implant and did several surgery to evaluated its satisfaction.

Biomechanical Effect of Total Disc Replacement on Lumbar Spinal Segment : A Finite Element Analysis (추간판 치환술이 요추분절에 미치는 생체역학적 영향 : 유한요소해석)

  • Park, Won-Man;Kim, Ki-Tack;Hong, Gyu-Pyo;Kim, Yoon-Hyuk;Oh, Taek-Yul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.58-66
    • /
    • 2008
  • The artificial discs have recently used to preserve the motion of the treated segment in lumbar spine surgery. However, there have been lack of biomechanical information of the artificial discs to explain current clinical controversies such as long-term results of implant wear and excessive facet contact forces. In this study, we investigated the biomechanical effects of three artificial implants on the lumbar spinal segments by finite element analysis. The finite element model of intact lumbar spine(L1-S) was developed and the three implants were inserted in L4-L5 segment of the spine model. 5 Nm of flexion and extension moments were applied on the superior plate of L1 with 400 N of compressive load. Excessive motions and high facet contact forces at the surgical level were generated in the all three implanted models. In the flexion, the peak von-Mises stresses in the semi-constrained type implant was higher than those in the un-constrained type implant which would cause wear on the polyethylene core. The results of the study would provide a biomechanical guideline for selecting optimal surgical approach or evaluating the current design of the implants, or developing a new implant.

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Spinal Cord Injury Treatment using a Noble Biocompatible Bridge

  • Hossain, S.M. Zakir;Babar, S.M. Enayetul;Azam, S.M. Golam;Sarma, Sailendra Nath;Haki, G.D.
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • The failure of injured axons to regenerate in the mature central nervous system (CNS) has devastating consequences for victims of spinal cord injury (SCI). Traditional strategies to treat spinal cord injured people by using drug therapy and assisting devices that can not help them to recover fully various vital functions of the spinal cord. Many researches have been focused on accomplishing re-growth and reconnection of the severed axons in the injured region. Using cell transplantation to promote neural survival or growth has had modest success in allowing injured neurons to re-grow through the area of the lesion. Strategies for successful regeneration will require tissue engineering approach. In order to persuade sufficient axons to regenerate across the lesion to bring back substantial neurological function, it is necessary to construct an efficient biocompatible bridge (cell-free or implanted with different cell lines as hybrid implant) through the injured area over which axons can grow. Therefore, in this paper, spinal cord and its injury, different strategies to help regeneration of an injured spinal cord are reviewed. In addition, different aspects of designing a biocompatible bridge and its applications and challenges surrounding these issues are also addressed. This knowledge is very important for the development and optimalization of therapies to repair the injured spinal cord.