Browse > Article
http://dx.doi.org/10.12989/bme.2015.2.4.237

Selection of polymer material in the design optimization of a new dynamic spinal implant  

Monede-Hocquard, Lucie (University Bordeaux)
Mesnard, Michel (University Bordeaux)
Ramos, Antonio (Department of Mechanical Engineering, University of Aveiro)
Gille, Olivier (Centre Hospitalier Universitaire, Service Orthopedie)
Publication Information
Biomaterials and Biomechanics in Bioengineering / v.2, no.4, 2015 , pp. 237-248 More about this Journal
Abstract
"Dynamic stabilization" systems have been developed in recent years to treat degenerative disorders of the spinal column. In contrast to arthrodesis (fusion), the aim here is to conserve intervertebral mobility to maximize comfort. When developing innovative concepts, many mechanical tests need to be carried out in order to validate the different technological solutions. The present study focuses on the B Dyn$^{(R)}$ "dynamic stabilization" device (S14$^{(R)}$ Implants, Pessac, France), the aim being to optimize the choice of polymer material used for one of the implant's components. The device allows mobility but also limit the range of movement. The stiffness of the ring remains a key design factor, which has to be optimized. Phase one consisted of static tests on the implant, as a result of which a polyurethane (PU) was selected, material no.2 of the five elastomers tested. In phase two, dynamic tests were carried out. The fatigue resistance of the B Dyn$^{(R)}$ system was tested over five million cycles with the properties of the polymer elements being measured using dynamic mechanical analysis (DMA) after every million cycles. This analysis demonstrated changes in stiffness and in the damping factor which guided the choice of elastomer for the B Dyn$^{(R)}$ implant.
Keywords
design optimization; elastomers; mechanical behavior; mechanical tests; spinal implant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Curtis, J. and Colas, A. (2004), Biomaterials Science: An Introduction to Materials in Medicine, Chapter 7, 2nd ed. Elsevier.
2 Diani, J., Fayolle, B. and Gilormini, P. (2009), "A review on the Mullins effect", Euro. Polymer J., 45(3), 601-612.   DOI
3 Ekman, P., Moller, H., Shalabi, A., Yu, Y.X. and Hedlund, R. (2009), "A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration", Euro. Spine J., 18(8), 1175-1186.   DOI
4 El Fray, M. and Altstadt, V. (2004), "Fatigue behavior of multiblock thermoplastic elastomers. Stepwise increasing strain test of poly (aliphatic/aromatic-ester) copolymers", Polymer, 45(1), 263-273.   DOI
5 Etebar, S. and Cahill, D.W. (1999), "Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability", J. Neurosurg., 90(suppl 2), 163-169.
6 F1717-11 (2011), Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model, Annual Book of ASTM Standards.
7 Graham, J. and Estes, B.T. (2009), "What standards can (and can't) tell us about a spinal device", SAS J., 3(4), 178-183.   DOI
8 Guerin, P. (2009), "Evaluation biomecanique in vitro du systeme de stabilisation dynamique B Dyn? : Influence sur la mobilite, la pression intra discale et les contraintes facettaires", Master Thesis, ENSAM Paris.
9 Guigui, P., Lenoir, T., Deloin, X. and Rillardon, L. (2007), "Consequences cliniques et radiologiques des arthrodeses lombaires et lombosacrees. Alternatives a l'arthrodese lombaire et lombosacree", Cahiers d'enseignement de la SOFCOT.
10 Hsu, S.H. and Lin, Z.C. (2004), "Biocompatibility and biostability of a series of poly (carbonate) urethanes", Colloid. Surf. B: Bio interface., 36(1), 1-12.   DOI
11 ISO 12189 (2008), "Implants for surgery - Mechanical testing of implantable spinal devices - Fatigue test method for spinal implant assemblies using an anterior support", International standard 2008.
12 Kumar, M.N., Jacquot, F. and Hall, H. (2001), "Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease", Euro. Spine J., 10(4), 309-313.   DOI
13 Lau, S. and Lam, K.S. (2007), "Lumbar stabilisation techniques", Curr. Orthoped., 21, 25-39.   DOI
14 McAfee, P., Khoo, L.T., Pimenta, L., Capuccino, A., Coric, D. and Hes, R. (2007), "Treatment of lumbar spinal stenosis with a total posterior arthroplasty prosthesis: implant description, surgical technique, and a prospective report on 29 patients", Neurosurg. Focus, 22(1), E13.
15 Molinari, R.W. (2007), "Dynamic stabilization of the lumbar spine", Curr. Opin. Orthoped., 18(3), 215-220.   DOI
16 Molinari, R.W., Dahl, J., Gruhn, W.L. and Molinari, W.J. (2013), "Functional outcomes, morbidity, mortality, and fracture healing in 26 consecutive geriatric odontoid fracture patients treated with posterior fusion", J. Spinal Disorder. Techniq., 26(3), 119-126.   DOI
17 MSAC. (2007), "Lumbar non-fusion posterior stabilisation devices", Assessment report, MSAC application 1099.
18 Pichon, P. (2010), "Fatigue thermomecanique des elastomeres polyurethanes : Caracterisation experimentale de l'evolution des microstructures et modelisation des echanges thermiques", Doctoral Thesis, INSA Lyon.
19 Schlegel, J.D., Smith, J.A. and Schleusener, R.L. (1996), "Lumbar motion segment pathology adjacent to thoracolumbar, lumbar and lumbosacral fusions", Spine, 21(8), 970-981.   DOI
20 Qi, H.J. and Boyce, M.C. (2005), "Stress-strain behavior of thermoplastic polyurethanes", Mech. Mater., 37(8), 817-839.   DOI
21 Schroeder, G.D., Murray, M.R. and Hsu, W.K. (2011), "A review of dynamic stabilization in the lumbar spine", Operat. Techniq. Orthoped., 21(3), 235-239.   DOI
22 Serhan, H., Mhatre, D., Defossez, H. and Bono, C.M. (2011), "Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons", SAS J., 5(3), 75-89.   DOI
23 Staniszewski, Z., Piegat, A., Pia tek-Hnat, M. and El Fray, M. (2014), "The effect of catalyst and segmental composition on the crystallization of multiblock polyesters for biomedical applications", Polimery/Polymers, 59(7), 592-597.
24 Barrey, C.Y., Boissiere, L., D'Acunzi, G. and Perrin, G. (2013), "One-stage combined lumbo-sacral fusion by anterior then posterior approach: Clinical and radiological results", Euro. Spine J., 22(s.6), 957-964.   DOI
25 Aota, Y., Kumano, K. and Hirabayashi, S. (1995), "Postfusion instability at the adjacent segments after rigid pedicle screw fixation for degenerative lumbar spinal disorders", J. Spinal Disorder., 8(6), 464-473.
26 Araghi, A., Anand, N., Sandhu, H. and Bae, H. (2007), "Clinical symposium I: Pedicle-based posterior nonfusion stabilization", SAS J., 1(4), 147-159.   DOI
27 Barrey, C.Y., Ponnappan, R.K., Song, J. and Vaccaro, A.E. (2008), "Biomechanical evaluation of pedicle screw based dynamic stabilization devices for the lumbar spine: a systematic review", SAS J., 2(4), 159-170.   DOI
28 Christenson, E.M., Dadsetan, M., Wiggins, M., Anderson, J.M. and Hiltner, A. (2004), "Poly carbonate urethane and poly ether urethane biodegradation: In vivo studies", J. Biomed. Mater. Res. Part A, 69A(3), 407-416.   DOI
29 Colas, A. and Curtis, J. (2004), Biomaterials Science: An Introduction to Materials in Medicine, Chapter 1, 2nd ed. Elsevier.