DOI QR코드

DOI QR Code

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University) ;
  • Park, Areum (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University) ;
  • Chun, Sang Woo (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University)
  • Received : 2016.09.06
  • Accepted : 2016.09.14
  • Published : 2016.09.30

Abstract

Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Keywords

References

  1. Kumazawa T, Perl ER. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indication of their place in dorsal horn functional organization. J Comp Neurol. 1979;177:417-434. doi:10.1002/cne.901770305
  2. Yoshimura M, Jessel TM. Membrane properties of rat substantia gelatinosa neurons in vitro. J Neurophysiol. 1989;62:109-118. https://doi.org/10.1152/jn.1989.62.1.109
  3. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROSinduced ROS release: an update and review. Biochim Biophys Acta. 2006;1757(5-6):509-517. doi:10.1016/j.bbabio.2006.04.029
  4. Kim HY, Chung JM, Chung K. Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neurosci Lett. 2008;5:447(1):87-91. doi:10.1016/j.neulet.2008.09.041
  5. Park ES, Gao X, Chung JM, Chung K. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal doesal horn neurons. Neurosci Lett. 2006;391:108-111. doi:10.1016/j.neulet.2005.08.055
  6. Schwartz ES, Lee I, Chung K, Chung JM. Oxidative stress in the spinal cord is an important contributor in capsaicininduced mechanical secondary hyperalgesia in mice. Pain. 2008;15:138(3):514-524. doi:10.1016/j.pain.2008.01.029
  7. Chu YC, Guan Y, Skinner J, Raja SN, Johns RA, Tao YX. Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund's adjuvant-induced persistent pain. Pain. 2005;119:113-123. doi:10.1016/j.pain.2005.09.024
  8. Guan Y, Yaster M, Raja SN, Tao YX. Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Mol Pain. 2007;3:29. doi:10.1186/1744-8069-3-29
  9. Tanabe M, Nagatani Y, Saitoh K, Takasu K, Ono H. Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice. Neuropharmacol. 2009;56:702-708. doi:org/10.1016/j.neuropharm.2008.12.003
  10. Chung E, Burke B, Bieber AJ, Doss JC, Ohgami Y, Quock RM, Dynorphin-mediated antinociceptive effects of L-arginine and SIN-1 (an NO donor) in mice. Brain Res Bull. 2006;70:245-250. doi:org/10.1016/j.brainresbull.2006.05.008
  11. Durate ID, Lorenzetti BB, Ferreira SH. Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Eur J Pharmacol. 1990;186:289-293. doi:10.1016/0014-2999(90)90446-D
  12. Lee HI, Park A, Chun SW. Effects of NaOCl on neuronal excitability and intracellular calcium concentration in rat spinal substantia gelatinosa neurons. International J Oral Biol. 2013;38:5-12. doi:10.11620/IJOB.2013.38.1.005
  13. Park A, Lee HI, Semjid D, Chun SW. Dual effect of exogenous nitric oxide on neuronal excitability in rat substantia gelatinosa neurons. Neural Plast. 2014;2014:628531. doi:10.1155/2014/628531
  14. Kim HY, Lee IH, Chun SW, Kim HK. Reactive oxygen species donors increase the responsiveness of dorsal horn neurons and induce mechanical hyperalgesia in rats. Neural Plast. 2015;2015:293423. doi:10.1155/2015/293423
  15. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95. doi:10.1152/physrev.00018.2001
  16. Baran CP, Zeigler MM, Tridandapani S, Marsh CB. The role of ROS and RNA in regulating life and death of blood monocytes. Curr Pharm Des. 2004;10:855-866. doi:org/10.2174/1381612043452866
  17. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol. 2006;21(1):69-80.
  18. Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther. 2004;309:869-878. doi:10.1124/jpet.103.064154
  19. Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM, Chung K. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci. 2009;7;29(1):159-168. doi:10.1523/JNEUROSCI.3792-08.2009
  20. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung J. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004;111:116-124. doi:org/10.1016/j.pain.2004.06.008
  21. Kim HK, Kim JH, Gao X, Zhou JL, Lee I, Chung K, Chung JM. Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Pain. 2006;122:53-62. doi:org/10.1016/j.pain.2006.01.013
  22. Shanker G, Aschner JL, Syversen T, Aschner M. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Mol Brain Res. 2004;128:48-57. doi:org/10.1016/j.molbrainres.2004.05.022
  23. Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'- dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med. 1999;27:146-159. doi:org/10.1016/S0891-5849(99)00061-1
  24. Carter WO, Narayanan PK, Robinson JP. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol. 1994;55:253-258. https://doi.org/10.1002/jlb.55.2.253
  25. Lee HI, Chun SW. Detection of Mitochondrial Reactive Oxygen Species in Living Rat Trigeminal Caudal Neurons. International J Oral Biol. 2015;40:103-109. doi:org/10.11620/IJOB.2015.40.2.103
  26. Hawkins BJ, Madesh M, Kirkpatrick CJ, Fisher AB. Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Biol Cell 2007;18(6):2002-2012. doi:10.1091/mbc.E06-09-0830
  27. Sato E, Mokudai T, Niwano Y, Kohno M. Kinetic analysis of reactive oxygen species generated by the in vitro reconstituted NADPH oxidase and xanthine oxidase systems. J Biochem. 2011;150(2):173-181. doi:10.1093/jb/mvr051
  28. Zhou X, Wen K, Yuan D, Ai L, He P. Calcium influxdependent differential actions of superoxide and hydrogen peroxide on microvessel permeability. Am J Physiol Heart Circ Physiol. 2009;296(4):H1096-107. doi:10.1152/ajpheart.01037.2008
  29. Son Y, Chun SW. Effects of hydrogen peroxide on neuronal excitability and synaptic transmission in rat substantia gelatinosa neurons. International J Oral Biol. 2007;32:153-160.
  30. Kotake Y. Pharmnacologic properties of phenyl N-tertbutylnitrone. Antioxid Redox Signal. 1999;1:481-499. doi:10.1089/ars.1999.1.4.-481
  31. Tanabe S, Wang X, Takahashi N, Uramoto H, Okada Y. HCO(3)(-)-independent rescue from apoptosis by stilbene derivatives in rat cardiomyocytes. FEBS Lett. 2005;17;579(2):517-522. doi:10.1016/j.febslet.2004.12.020
  32. Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol. 2003;15:247-254. doi:10.1016/S0955-0674(03)00002-4
  33. Little JW, Doyle T, Salvemini D. Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids. 2012;42:75-94. doi:10.1007/s00726-010-0633-0