Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2018.8.2.061

The convergence effect of medical industry through stem cell implant treatment  

Lee, Tae-Hoon (Department of Emergency Medical Service, Namseoul University)
Publication Information
Journal of Convergence for Information Technology / v.8, no.2, 2018 , pp. 61-65 More about this Journal
Abstract
Our experiment studied that grafted stem cells reduced behavioral deficiency in rodent animal models of clip compressive surgery inducing spinal cord infarction. Our research proved the effect of embryonic stem cells to the spinal cord infarction caused by compressing T9-10 with an aneurysm clip, focusing the application of grafted stem cells for reduction of infarction and regeneration of spinal cord nervous injury. Therefore, our research suggests manifest results that implantation of mouse embryonic stem cell could show behavioral improvement after severe spinal cord damage. Therefore, mouse embryonic stem cell (mESC) could be useful application for the method in neurological injury. Conclusively, stem cell implant therapy may enhance the effectiveness of stem cell implant for central nervous system injury.
Keywords
Clip-compression surgery; Spinal cord; Infarction; Implantation; Embryonic stem cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. M. Myckatyn & S. E. Mackinnon. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury. (2004). Transplant Immunology 12, 343-358. DOI : 10.1016/j.trim.2003.12.017   DOI
2 Y. Ogawa, K. Sawamoto, T. Myata & H. Okano. (2002). Transplantation of in vitro-expanded fetal neural progenytor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. Journal of Neuroscience Research 69, 925-933. DOI : 10.1002/jnr.10341   DOI
3 A. Muheremu, J. Peng & Q. Ao. (2016). Stem cell based therapies for spinal cord injury. Tissue and Cell 48, 328-333. DOI : 10.1016/j.tice.2016.05.008   DOI
4 T. Setoguchi, K. Nakashima, T. Takizawa & T. Taga. (2004). Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Experimental Neurology 189, 33-44. DOI : 10.1016/j.expneurol.2003.12.007   DOI
5 Y. Ohta, A. Hamaguchi, M. Ootaki, M. Watanabe & M. Takenaga. (2017). Intravenous infusion of adipose- derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy 19(7), 839-848. DOI : 10.1016/j.jcyt.2017.04.002   DOI
6 T. Morita, M. Sasaki, Y. K. Sasaki, M. Nakazaki & O. Honmou. (2016). Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 335, 221-231. DOI : 10.1016/j.neuroscience.2016.08.037   DOI
7 C. P. Hofstetter, E. J. Schwarz, D. Hess, D. J. Prockop & L. Olson. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceeding National Academics Science 99, 2199-2204. DOI : 10.1073/pnas.042678299   DOI
8 M. Ohta, Y. Suzuki, T. Noda, K. Kataoka, S. Kuno & C. Ide. (2004). Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Experimental Neurology 187, 266-278. DOI : 10.1016/j.expneurol.2004.01.021   DOI
9 Y. Jin, J. Bouyer, C. Haas & I. Fischer. (2014). Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat. Experimental Neurology 257, 57-69. DOI : 10.1016/j.expneurol.2014.04.016   DOI
10 R. Lv, N. Mao, J. Wu, C. Lu & Z. Shi. (2015). Neuroprotective effect of allicin in a rat model of acute spinal cord injury. Life Science 143, 114-123. DOI : 10.1016/j.lfs.2015.11.001   DOI
11 O. Steward & R. Willenberg. (2017). Rodent spinal cord injury models for studies of axon regeneration. Experimental Neurology 287, 374-383. DOI : 10.1016/j.expneurol.2016.06.029   DOI
12 J. Hu, Q. Yu, L. Xie & H. Zhu. (2016). Targeting the blood-spinal cord barrier: A therapeutic approach to spinal cord protection against ischemia-reperfusion injury. Life Science 158, 1-6. DOI : 10.1016/j.lfs.2016.06.018   DOI
13 A. Saghazadeh & N. Rezaei. (2017). The role of timing in the treatment of spinal cord injury. Biomedicine & Pharmacology 92, 128-139. DOI : 10.1016/j.biopha.2017.05.048   DOI
14 N. Zareen, M. Shinozaki, D. Ryan, H. Alexander & J. H. Martin. (2017). Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Experimental Neurology 297, 179-189. DOI : 10.1016/j.expneurol.2017.08.004   DOI
15 C. Zhang, J. Ma, L. Fan, Y. Zou & J. Song. (2015). Neuroprotective effects of safranal in a rat model of traumatic injury to the spinal cord by anti-apoptotic, anti-inflammatory and edema-attenuating. Tissue and Cell 47(3), 291-300. DOI : 10.1016/j.tice.2015.03.007   DOI