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Abstract : It is known that among many factors, relative micromotion at bone/implant interfaces can hinder bone ingrowth
into surface pores of an implant. Loading conditions, mechanical properties of spinal materials. friction coefficients at the
interfaces and geometry of spinal segments would affect the relative micromotion and spinal stability. A finite element model
of the human lumbar spine segments (L4-L5) was constructed to investigate the mechanical sensitivity at the interfaces
between bone and cage. Relative micromotion, posterior axial displacement, bone stress, cage stress and friction force were
predicted in changes of friction coefficients, loading conditions, bone density and age-related material/geometric properties of
the spinal segments. Relative micromotion (slip distance in a static loading means relative micromotion in routine activity) at
the interfaces increased significantly as the mechanical properties of cancellous bone, annulus fibers or/and ligaments decrease
or/and as the friction coefficient at the interfaces decreases. The contact normal force at the interfaces decreased as cancellous
bone density decreases or/and as the friction coefficient increases. A significant increase of slip distance at anterior annulus
occurred with an addition of torsion to compressive preload. Relative micromotion decreased with an increase of disc area. In
conclusion, relative micromotion, stress response, posterior axial displacement and contact normal force are sensitive to the
friction coefficient of the interfaces, bone density, loading conditions and age-related geometric/material changes.
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Fig. 1. A finite element model for a one-cage spine
model| (L4-L5)

technology has increased due to less blood loss and quick
recovery to work. A thread insert (a titanium cage) is a
hollow screw device usually placed in the disc space bet-
ween the vertebrae. Experimentally, Rapoff et al. (1995)
compared the biomechanical characteristics of two types
of the interbody cage. They showed that insertion of the
interbody cages increases the stiffness of the motion
segment up to 30% of that of a normal spine in compre—
ssion. Also, Tencer et al. (1995) reported that insertion of
the cages increases vertebral motion segment stiffness
and decreases laxity by distracting intervertebral struc-
tures. Little is known, however, about the mechanical
sensitivity at the contact interfaces of the lumbar spine
segments with an anterior interbody cage to bone density,
friction coefficients of the interfaces, age-related material/
geometric properties and loading conditions.

In orthopedics, implant interfaces with bone have al-
ways been a biomechanical challenge for long term fixat-
ion and stability. Uhthoff and Germaine (1977) and Brun-
ski et al. (1979) reported that formation of fibrous tissue
is governed by relative motion of the screw fixation or
implants. They assumed that bone fibrous tissue was
caused by relative motion between the bone tissue and
the implants. Dalenberg et al. (1993) showed that after
implanting stiff screws in dogs, bone resorption on the
interfaces between bone and the implants occurs during
the first post operative three months. They observed bone
loss that was considered to be a result of stress
shielding. Pilliar et al. (1981) reported that relative move-
ment greater than 0.15mm can hinder bone ingrowth into
porous surfaced implants. Kim and Vanderby (2000) sho-
wed in a one-cage finite element model that relative mic-
romotion and/or stress shielding could hinder bone ingro-
wth and that the one-cage spine could be more vulnerab-
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le to relative micromotion than the two-cage spine in
lateral bending. These studies suggest that relative moti-
on and altered stress/strain levels on the interfaces can
be problematic. Interface mechanics may then provide
insight and interpolation for the observed performance of
current designs and may provide a point of departure for
the design improvement of spinal implants.

The objective of the present paper is to evaluate anal-
ytically mechanical parameters such as relative micromot-
ion, contact normal force and stress at the contact interf-
aces and to investigate the mechanical sensitivity at the
interfaces to the friction coefficient, cancellous bone dens-
ity, age-related geometric/material properties and loading
conditions.

MATERIALS AND METHODS

A human lumbar spine model of L4-L5 vertebrae with
an interbody cage was used for this study (Fig. 1). The
geometric data for the modeling were based on the recent
studies (Panjabi et al. 1992, 1993, Grobler et al. 1993,
Marchnad and Ahmed 1990). All
cancellous bone were considered a continuum.

materials  including

Using a finite element package (ANSYS, version 5.5,
Swanson Analysis Systems, Inc., Houston, PA), in formu-
lation of the finite element model, cortical bone and canc-
ellous bone were modeled as three-dimensional isoparam-
etric eight-node elements. The cortical bone, cancellous
bone and titanium cage were assumed to be isotropic and
homogeneous. The intervertebral disc was modeled as 6
composite materials with a series of fiber bands and a
ground substance around the nucleus, similar to the
recent studies (Lim et al. 1994, Shirazi-Adl 1994, Goel et
al. 1994), considering the mechanical properties of the
annulus fibrosis according to the studies (Marchand and
Ahmed 1990, Skaggs et al. 1994). The nucleus of the
intervertebral disc was ignored because it is likely to be
significantly compromised by the surgical procedure, and
the stiffness of the remaining tissue is very low relative
to the cage.

The cage is a hollow threaded titanium cylinder with
several holes through its wall (Fig. 1). A model of the
interbody cage was added to a normal model (L4-1L5) to
simulate the InterBody Fusion Device (IBFD; Sofamor-
Danek, Memphis, Tennesee). Inside the cylindrical inter-
body cage, bone graft (formed from morselized cancellous
bone packed) and bone ingrowth (through the holes in
the cage) were assumed to have the properties of the
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Table 1. Material properties of human lumbar spine (L4-L5)

. Young's . Poisson’s Ash density
Materials modulus (MPa) Yield strength (MPa) ratio (/e )
Cortical bone 12000 173 0.3
Cancellous bone!™ 100 34 02 011 02
Posterior bone ™ 3500 173 0.25
Cartilaginous endplate 24 04
Ground substance 6 0.49
Annulus fiber!"'%*! 59-136 36-10.3
Titanium cage'™ 110,000 848.4 0.3 485
Bone graft 100 -- 0.2 0.17
Ligaments“a'g‘” Cross-sec. area(mm®)

Anterior longitudinal 78 224
Posterior longitudinal 10 7.0
Ligamentum flavum=* 17 14.1
Transverse ligament 10 0.6
Capsular ligament 75 105
Intraspinous 10 14.1
Supraspinous 8.0 105

*prestrain 3.5% (Nachemson and Evans 1968)

cancellous bone (Closkey et al. 1993). Bone ingrowth was
assumed to occupy the holes on the contact surfaces bet
ween vertebral bodies and the cage. The cage, bone graft
and bone ingrowth were modeled with three-dimensional
solid elements. The elements of the bone ingrowth were,
however, excluded in computation. The interfaces between
vertebral bodies and the cage were meshed as contact
elements. The friction coefficient of the interfaces was
assumed to be 0.4 according to Shirazi-Adl et al. (1993).
An initial gap distance of the contact elements was
assumed to be zero due to pre-tension of the annulus and
ligaments induced by insertion of the cage (Kim 2000,
Rapoff et al. 1995). In Table 1 the ash density of cancell-
ous bone was assumed to be 0.11, 0.17 or 0.2g/cm® (Mos-
ekilde et al. 1987), which represents 40, 100, 120 MPa
Young's modulus, respectively. Age-related changes in
disc area (Nachemson 1960), pedicle diameter (Amonoo
Kuofi 1995), elastic modulus of annulus fibers (Acaroglu
et al. 1995) and elastic modulus of ligaments (Nachemson
and Evans 1968) and changes in the friction coefficient
and facet gap distance were considered to investigate the
mechanical behavior of the interfaces.

When inserting the interbody cage into the lumbar sp-
ine, some researchers (Kim and Vanderby 2000, Rapoff et
al. 1995) observed pretension of the annulus fibers and
ligaments. However, with rare information of the pretens-
ion it was assumed that the insertion of the interbody

cage causes to 1—2% tensile prestrain of the annulus
fibers and 1% tensile prestrain of the ligaments. Moreo-
ver, ligamentum flavum is known to be pretensioned as
much as 5 N in a normal old spine (the equivalent pre-
strain of the pretension is 2.5% based on its mechanical
properties) (Nachemson and Evans 1968, White and Pan
jabi 1990). Consequently, ligamentum flavum was ass-
umed to have 35% prestrain in the one cage model. Ho
wever, the effects of the tensile prestrains were ignoble
under compresssion (Kim and Vanderby 2000). The finite
element modeling of the present study was detailed and
validated in Kim and Vanderby (2000).

The inferior surface of the L5 vertebra was fixed. The
loading conditions on the superior surface were chosen to
be within a normal physioclogic range (White and Panjabi
1990), using a compressive load of 1200 N, torsion of 10
Nm or 1.5 degrees, lateral bending of 5 Nm, and extensi -
on/flexion of 10 Nm or 7.0 degrees.

RESULTS

In general, the predicted parameters were proportional
to the applied loads. Due to the near linear relationship
between the parameters and loads, the data in the follo-
wing paragraphs are based on the applied loads of the
loading conditions.

J. Biomed. Eng. Res: Vol. 21, No. 3, 2000
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Fig. 2. The effects of the variations of the Young's
modulus of cancellous bone at the contact interfaces
under 1200 N compression. The results were normalized
by the corresponding values of 120 MPa VYoung's
modulus of cancellous bone

compression

Figure 2 shows the mechanical variables normalized by
those of 120 MPa Young's modulus of cancellous bone. A
decrease of the Young’s modulus increased relative micr-
omotion (slip distance). In 40 MPa Young's Modulus, 110
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Fig. 3. The mechanical behavior in the contact surfaces
depends strongly on the loading conditions. The results
were normalized by the corresponding values of 1200 N

% increase of relative micromotion was observed at the
contact regions. However, the decrease reduced von Mises
stress of cancellous bone and normal force of the interfa-
ces. The maximum von Mises stress of the cage shows
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slight changes.

The mechanical behavior at the interfaces varies with
the loading conditions (Fig. 3). In Figure 3, the data of
1200 N compression normalized those of each loading ap-
plied. The ratios of the data in 600 N compression to
those of 1200 N compression are seemed to be a half. In
general, an addition of torsion, extension, flexion or lateral
bending to the preload (1200 N compression) increases
relative motion between the interfaces (i.e. at the anterior
contact surfaces in torsion or/and flexion, at the posterior
in extension and at the lateral in lateral bending). In par-
ticular, an addition of 10 Nm torsion to 1200 N com
pression leads to 250% increase of relative micromotion at
the anterior region of the contact interfaces.

As shown in Figure 4, where the data were normalized
by those of frictionless interfaces under 1200 N compres-
sion, slip distance, von Mises stresses and contact forces
vary with the friction coefficient between the interfaces.
With an increase of the friction coefficient, cage stress,
contact normal force and slip distance decrease, whereas
cancellous bone stress increases.

In compression of 1200 N an increase in pedicle diame
ter or in disc area decreases cage stress, bone stress and
posterior axial displacement, whereas leads to little chan-
ge of slip distance (Fig. 5). Relative micromotion (slip
distance) increases slightly with an increase of pedicle di
ameter or with a decrease of elastic modulus of annulus
fibers, whereas decreases with an increase of disc area in
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Fig. 5. The effects of the parameters of lumbar spine in
1200 N compression. The data were normalized by the one
-cage model with normal geometric/material properties

torsion with preload (Fig. 6).

DISCUSSION

This study investigated the mechanical sensitivity at
bone/implant interfaces of the anterior lumbar fusion spine
segments (L4 L5) to the friction coefficient of the inter
faces, age related material/geometric change and loading
conditions. This study considered physiologic levels of
axial, torsional and bending loads on the lumbar spine.

Actually the contact surfaces between the bone and
cage are not uniform with non uniform vertebral geome
try near the intervertebral disc. The bone/implant contact
surfaces vary in accordance with spinal anatomy, place
ment and the insertion technique. In the present one cage
model, complete contact of the interfaces between bone
and cage was initially assumed. Thus, relative micromo
tion computed at the contact interfaces would be undere
stimated due to local bone failure resulted from incom-
plete contact and stress concentration at the interfaces. In
addition, all materials in the one cage model were assu
med to be linearly elastic and homogeneous. Experimen -
tally, the material properties of cancellous bone are not
uniform and intervertebral disc materials are nonlinear
viscoelastic. Despite these simplifying assumptions, results
from the current study demonstrate qualitative trends and
useful mechanical insight into surgical alterations.

The present study showed that relative micromotion at
the interfaces is sensitive to the friction coefficient. As
the friction coefficient increases, relative micromotion and
cage stress (von Mises) significantly reduce. The decre-
ase of relative micromotion would enhance bone ingrowth
into surface pores of the cage. However, an increase in
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Fig. 6. The effects of parameters of lumbar spine in
torsional rotation of 1.5 degrees with 1200 N compr-
ession. The data were normalized by the one-cage model
with normal geometric/material properties
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the friction coefficient tends to increase bone stress. Con-
sequently, a reasonable improvement in the friction coeffi-
cient would lead to better spinal prosthesis stabilization
and implant performance.

To loading conditions relative micromotion was also
vary sensitive. In particular, an addition of torsion to co-
mpressive prelaod significantly increased slip distance at
the anterior region of the interfaces because of cutting
the anterior part of the disc and the anterior longitudinal
ligaments as the implant was placed from the anterior.
Also, an addition of extension, flexion or lateral bending
to compression tends to increase relative micromotion at
the interfaces. It would, therefore, be better to avoid cutt-
ing the anterior part of the disc and the anterior longitu-
dinal ligament so that less slip occur at the anterior
region and to avoid an excessive rotational loading.

It is known that the mechanical properties of bone, an-
nulus fibers and ligaments decrease with aging (Mosekil-
de et al. 1987, Acaroglu et al. 1995, Nachemson and
Evans 1968). In the present study, a significant increase
of slip distance occurred as cancellous bone density decr-
eases. According to Lund et al. (1998) and Jost et al.
(1998), bone density of the adjacent vertebrae is a signi-
ficant factor for stabilization. Low bone strength is attri-
buted, in general, to low bone density (Mosekilde et al.
1987). When bone near implants has low bone strength,
bone failure might occur even under physiologic loadings,
adversely affecting the eventual success of the artropla-
sty. Furthermore, a change in age-related mechanical pr-
operty of annulus fibers and ligaments would reduce sta-
bility of spine segments, causing more significant relative
micromotion between bone and implants under various
combined loads.

Among age-related geometric changes of spine seg-
ments an increase in disc area and/or in pedicle diameter
would enhance spinal stability because relative micromo~
tion, cage stress and bone stress near the contact inter-
faces decrease under compression and various combined
loadings. In particular, to torsion with preload or to fle~
xion with preload, an age-related change of disc area
would contribute significantly to reduction of relative mi-
cromotion. Therefore, it is expected that larger disc area
or/and larger pedicle diameter would establish more stable
interbody fusion of spinal segments after the arthroplasty.

Since an interbody cage was simulated for the present
study, the results from the one-cage model would not
support enough a spine model with two cages or with
other interbody devices. A biomechanical study revealed
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that an increase in extension stiffness (or decrease in la-
Xity) occurred only with addition of posterior plates, com-
pared with two-cage spinal segments (Tencer et al. 1995).
According to them, the torsional stiffness of the specimen
with two threaded inserts placed posteriorly was reduced
significantly. These problematic loadings of torsion or ex-
tension may be substantially stabilized by using a transl-
aminar screw fixation or a posterior plate (Ranthonyi et
al. 1998, Tencer et al. 1995). Further study is necessary
to estimate and investigate analytically the mechanical
behavior of a stabilized spine with these interbody dev-
ices.

In a long-term follow up, age-related changes in the
material properties would hinder bone ingrowth at the
interfaces. An increase of spinal stiffness induced by the
age-related geometric change would cause additional deg-
eneration of adjacent intervertebral discs, which is called
"juxtafusion degeneration’ In conclusion, the effects of the
material/geometric properties, friction coefficients and loa-
ding conditions on the mechanical behavior of the contact
interfaces are likely to provide useful insights to physici-

ans in spinal surgery.
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