Effects of Mitochondrial Reactive Oxygen Species on Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae-In (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University) ;
  • Park, A-Reum (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University) ;
  • Chun, Sang-Woo (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University)
  • Received : 2011.12.13
  • Accepted : 2012.02.14
  • Published : 2012.03.31

Abstract

Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, and that mitochondria are the main source of ROS in the spinal dorsal horn. To investigate whether mitochondrial ROS can induce changes in membrane excitability on spinal substantia gelatonosa (SG) neurons, we examined the effects of mitochondrial electron transport complex (ETC) substrates and inhibitors on the membrane potential of SG neurons in spinal slices. Application of ETC inhibitors, rotenone or antimycin A, resulted in a slowly developing and slight membrane depolarization in SG neurons. Also, application of both malate, a complex I substrate, and succinate, a complex II substrate, caused reversible membrane depolarization and enhanced firing activity. Changes in membrane potential after malate exposure were more prominent than succinate exposure. When slices were pretreated with ROS scavengers such as phenyl-N-tert-buthylnitrone (PBN), catalase and 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), malate-induced depolarization was significantly decreased. Intracellular calcium above $100{\mu}M$ increased malateinduced depolarization, witch was suppressed by cyclosporin A, a mitochondrial permeability transition (MPT) inhibitor. These results suggest that enhanced production of spinal mitochondrial ROS can induce nociception through central sensitization.

Keywords

References

  1. Levy D, Zochodne DW. Local nitric oxide synthase activity in a model of neuropathic pain. Eur J Neurosci. 1998;10:1846-55.
  2. Khalil Z, Khodr B. A role for free radicals and nitric oxide in delayed recovery in aged rats with chronic constriction nerve injury. Free Rad Biol Med. 2001;31:430-9.
  3. Liu D, Liu J, Sun D, Wen J. The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction. J Neurotrauma. 2004;21:805-16.
  4. Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther. 2004;309:869-78.
  5. Gonzalez C, Sanz-Alfayate G, Agapito MT, Gomez-Nino A, Rocher A, Obeso A. Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir Physiol Neurobiol. 2002;132(1):17-41.
  6. Baran CP, Zeigler MM, Tridandapani S, Marsh CB. The role of ROS and RNA in regulating life and death of blood monocytes. Curr Pharm. 2004;10:855-66.
  7. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol. 2006;21(1):69-80.
  8. Djordjevic VB. Free radicals in cell biology. Int Rev Cytol. 2004;237:57-89.
  9. McGeer EG, McGeer PL. Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Res. 1999;5:821-36.
  10. Wells PG, Kim PM, Laposa RR, Nicol CJ, Parman T, Winn LM. Oxidative damage in chemical teratogenesis. Mutat Res. 1997;396:65-78.
  11. Parman T, Wiley MJ, Wells PG. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med. 1999;5:582-5.
  12. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROSinduced ROS release: an update and review. Biochim Biophys Acta. 2006;1757(5-6):509-17.
  13. Kim HY, Chung JM, Chung K. Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neurosci Lett. 2008;5;447(1): 87-91.
  14. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11(6):1373-414.
  15. Park ES, Gao X, Chung JM, Chung K. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett. 2006; 391:108-11.
  16. Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM, Chung K. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci. 2008;7;29(1):159-68.
  17. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004;111:116-24.
  18. Khattab MM. TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anionenhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur J Pharmacol. 2006;548:167-73.
  19. Lee I, Kim HK, Kim JH, Chung K, Chung JM. The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain. 2007;15;133(1-3):9-17.
  20. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;19;278(38): 36027-31.
  21. Baines CP. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol. 2009; 104(2):181-8.
  22. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemiareperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065-89.
  23. Zoccarato F, Cavallini L, Bortolami S, Alexandre A. Succinate modulation of H2O2 release at NADH: ubiquinone oxidoreductase (Complex I) in brain mitochondria. Biochem J. 2007;406(1):125-9.
  24. Verkhovskaya ML, Belevich N, Euro L, Wikström M, Verkhovsky MI. Real-time electron transfer in respiratory complex I. Proc Natl Acad Sci USA. 2008;105(10):3763-7.
  25. Hoffman DL, Brookes PS. Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem. 2009;284(24):16236-45.
  26. Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980;191(2):421-7.
  27. Han D, Canali R, Rettori D, Kaplowitz N. Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol Pharmacol. 2003;64(5):1136-44.
  28. Avshalumov MV, Chen BT, Marshall SP, Peña DM, Rice ME. Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci. 2003;1;23(7):2744-50.
  29. Bao L, Avshalumov MV, Rice ME. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J Neurosci. 2005;25(43):10029-40.
  30. Avshalumov MV, Chen BT, Koos T, Rice ME. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci. 2005;25:4222-31.