• Title/Summary/Keyword: spherical particle

Search Result 679, Processing Time 0.034 seconds

Preparation and Sintering Characteristics of Gd-Doped CeO2 Powder by Oxalate Co-Precipitation (옥살산 공침법에 의한 Gd-Doped CeO2 분말의 합성 및 소결 특성)

  • Han, In-Dong;Lim, Kwang-Young;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.666-672
    • /
    • 2006
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized by oxalate co-precipitation and milling and its thermal decomposition, phase formation, and sinterability were investigated. As-prepared precipitates were non-crystalline due to the milling process and completely decomposed at 400$^{\circ}C$ The powder calcined at 800$^{\circ}C$ for 2 h contained fine p]sty particles with an average size of 0.69 $\mu$m. Attrition milling of the calcined powder for 2 h had a little milling effect, resulting in a slight decrease in the particle size to 0.45 $\mu$m. The milled powder consisted of small spherical primary particles and some large particles, which had been agglomerated during calcination. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 78.7% at 1000$^{\circ}C$ and 97.8% at 1300$^{\circ}C$, respectively. Densification was found to almost complete at temperature above 1200$^{\circ}C$ and a dense and homogeneous microstructure was obtained. A rapid grain growth occurred between 1200$^{\circ}C$ and 1300$^{\circ}C$. Grains in 0.1$\sim$0.5 $\mu$m sizes at 1200$^{\circ}C$ grew to 0.2$\sim$2 $\mu$m and their size distribution became broader at 1300$^{\circ}C$.

Hydrogneation and Electrochemical Characteristics of Gas-atomized Zr-based $AB_2$ Hydride for Ni-MH Secondary Battery (기체분무형 공정으로 제조된 Zr계 금속수소화물의 수소화반응 및 Ni-MH 2차전지 전극 특성에 관한 연구)

  • Kim, Jin-Ho;Hwang, Kwang-Taek;Kim, Byung-Kwan;Han, Jeong-Seb
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.505-511
    • /
    • 2009
  • The hydriding and electrochemical characteristics of Zr-based $AB_2$ alloy produced by gas atomization have been extensively examined. For the particle morphology of the as-cast and gas-atomized powders, it can be seen that the mechanically crushed powders are irregular, while the atomized powder particles are spherical. The increase of jet pressure of gas atomization process results in the decrease of hydrogen storage capacity and the slope of plateau pressure significantly increases. TEM and EDS studies showed the increase of jet pressure in the atomization process accelerated the phase separation within grain of the gas-atomized alloy, which brought about a poor hydrogenation property. However, the gas-atomized $AB_2$ alloy powders produced by jet pressure of 50 bar kept up the reversible $H_2$ storage capacity and discharge capacity similar to the mechanically crushed particles. In addition, the electrode of gas-atomized Zr-based $AB_2$ alloy of 50 bar showed improved cyclic stability over that of the cast and crushed particulate, which is attributed to the restriction of crack propagation by grain boundary and dislocation with ch/discharging cycling.

Synthesis of Tetramethylorthosilicate (TMOS) and Silica Nanopowder from the Waste Silicon Sludge (폐(廢)실리콘슬러지로부터 TMOS 및 실리카 나노분말(粉末) 제조(製造))

  • Jang, Hee-Dong;Chang, Han-Kwon;Cho, Kuk;Kil, Dae-Sup
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.41-45
    • /
    • 2007
  • Tetramethylorthosilicate (TMOS) and silica nanopowder were synthesized from the waste silicon sludge containing 15% weight of silicon powder. TMOS, a precursor of silica nanopowder, was firstly prepared from the waste silicon sludge by catalytic chemical reaction. The maximum recovery of the TMOS was 100% after 5 hrs regardless of reaction temperature above $130^{\circ}C$. But the initial reaction rate became faster while the reaction temperature was higher than $150^{\circ}C$. As the methanol feedrate Increased from 0.8 ml/min to 1.4 ml/min, the yield of reaction was not varied after 3 hrs. Then, silica nanopowder was synthesized from the synthesized TMOS by flame spray pyrolysis. The morphology of as-prepared silica nanopowder was spherical and non-aggregated. The average particle diameters ranged from 9 nm to 30 nm and were in proportional to the precursor feed rate, and precursor concentration.

A Study on the Application of Mongolia Fly Ash as Cement Additive (몽골 플라이애시의 시멘트 혼화재로의 적용에 관한 연구)

  • Seo, Sung Kwan;Kim, Yoo;Cho, Hyung Kyu;Chu, Yong Sik
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.50-57
    • /
    • 2017
  • In this study, characteristics of Mongolian fly ash and the possibility of its use as a cement additive through grinding process were examined. Mongolian fly ash was larger than domestic fly ash and less spherical. The CaO content of Mongolian fly ash was higher than domestic fly ash and the other components were similar. After vibratory milling, the mean particle size of fly ash decreased to $7.9{\mu}m$ and the blaine increased. When milled fly ash was mixed with cement, it showed the best compressive strength value at 60 min. These strength values were higher than OPC at all curing times.

Optimization of Silver Nanoparticles Synthesis through Design-of-Experiment Method (실험계획법을 활용한 은 나노 입자의 합성 및 최적화)

  • Lim, Jae Hong;Kang, Kyung Yeon;Im, Badro;Lee, Jae Sung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.756-763
    • /
    • 2008
  • The aim of this work was to obtain uniform and well-dispersed spherical silver nanoparticles using statistical design-of-experiment methods. We performed the experiments using 2 k fractional factorial designs with respect to key factors of a general chemical reduction method. The nanoparticles prepared were characterized by SEM, TEM and UV-visible absorbance for particle size, distribution, aggregation and anisotropy. The data obtained were analyzed and optimized using a statistical software, Minitab. The design-of-experiment methods using quantified data enabled us to determine key factors and appreciate interactions between factors. The measured properties of nanoparticles were dominated not only by individual one or two main factors but also by interactions between factors. The appropriate combination of the factors produced small, narrow-distributed and non-aggregated silver nanoparticles of about 30 nm with approximately 10% standard deviation.

Doxorubicin Release from Core-Shell Type Nanoparticles of Poly(DL-lactide-co-glycolide)-Grafted Dextran

  • Jeong, Young-Il;Choi, Ki-Choon;Song, Chae-Eun
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.712-719
    • /
    • 2006
  • In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around $50\;nm{\sim}300\;nm$ according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA. $^1H-NMR$ spectroscopy using $D_2O$ and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.

Electrohydrodynamic Spray Drying Using Co-axial Nozzles for Protein Encapsulation (단백질 캡슐화를 위한 동축 이중 노즐을 사용한 전기분무건조법)

  • Ho, Hwan-Ki;Park, Se-Hyun;Park, Chul-Ho;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.353-357
    • /
    • 2009
  • Spray drying is an effective and stable process, which has been widely used to produce pharmaceutical powders. In the traditional spray drying process, it was not quite easy to control the aggregation and the size of particles. Particularly, the preparation of polymeric particles was relatively hard compared to the preparation of food and pharmaceutical ingredients, typically organic materials of small molecular weights. In this study, modification of a conventional spray dryer was tried to use electrical charge and co-axial nozzles to prepare polymeric particles. Poly(ethylene glycol) and poly (D,L-lactide-co-glycolide) were used as the inner polymeric materials, and lactose as the outer shell materials. The results showed that electrohydrodynamic spray-dried particles had a relatively uniform size and particle morphology, and the aggregation of particles could be suppressed compared to the conventional spray-dried particles. The electrohydrodynamic spray-dried powders consisted of spherical particles of $2{\sim}5{\mu}m$ diameters.

Study on Thermal and Physical Properties of One-component Curable Hybrid Polyurethane Elastomer (1액 경화형 하이브리드 폴리우레탄 탄성체의 열적, 물리적 특성에 관한 연구)

  • Mok, Dong Youb;Kim, In-Soo;Kim, Dong Ho;Kim, Gu Ni
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.318-328
    • /
    • 2012
  • In this study, the one-component curable polyurethane resin was manufactured using blocked isocyanate and hybrid technology. To prepare the one-component curable hybrid polyurethane, silica hybrids including hydroxyl group was synthesized, and the size, shape and distribution of hybrid particle in polyurethane resin were confirmed. Then the dissociation property, mechanical property and molding property of blocked isocyanate were investigated. The dissociation property of blocked isocyanate in one-component curable polyurethane became better as the heating temperature and treatment time increased. The synthesized silica hybrid had spherical appearance and size of 23~27 nm in diameter, and it was observed that the hybrid particles were homogeneously distributed in polyurethane structure. In the case of hybrid polyurethane, the mechanical property, anti-abrasion and thermal property were higher than those of general polyurethane, and it was observed that the mechanical property was maintained when the plasticizer was introduced.

Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery (실리콘-탄소나노튜브-탄소 복합체 제조 및 리튬이온전지 응용)

  • Kim, Chan Mi;Kim, Sun Kyung;Chang, Hankwon;Kil, Dae sup;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.42-48
    • /
    • 2018
  • Silicon has attracted extensive attention due to its high theoretical capacity, low discharge potential and non-toxicity as anode material for lithium ion batteries. In this study, Si-CNT-C composites were fabricated for use as a high-efficiency anode material in a lithium ion battery. Aerosol self-assembly and post-heat treatment processes were employed to fabricate the composites. The morphology of the Si-CNT-C composites was spherical and an average particle size was $2.72{\mu}m$. The size of the composite increased as concentration of Si and CNT increased in the precursor solution. In the Si-CNT-C composites, CNT and C carbonized from glucose were attached to the surface of Si particles. Electrochemical measurement showed that the cycle performance of Si-CNT-C composites was better than that of silicon particles.

3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite (CALIPSO위성 탑재 라이다를 이용한 동북아시아 지역의 대기 에어러솔 3차원 광학특성 분포)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.559-570
    • /
    • 2014
  • Backscatter signal observed from the space-borne Light Detection And Ranging (LIDAR) system is providing unique 3-dimensional spatial distribution as well as temporal variations for atmospheric aerosols. In this study, the continuous observations for aerosol profiles were analyzed during a years of 2012 by using a Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP), carried on the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The statistical analysis on the particulate extinction coefficient and depolarization ratio for each altitude was conducted according to time and space in order to estimate the variation of optical properties of aerosols over Northeast Asia ($E110^{\circ}-140^{\circ}$, $N20^{\circ}$ $-50^{\circ}$). The most frequent altitudes of aerosols are clearly identified and seasonal mean aerosol profiles vary with season. Since relatively high particle depolarization ratios (>0.5) are found during all seasons, it is considered that the non-spherical aerosols mixed with pollution are mainly exists over study area. This study forms initial regional 3-dimensional aerosol information, which will be extended and improved over time for estimation of aerosol climatology and event cases.