Doxorubicin Release from Core-Shell Type Nanoparticles of Poly(DL-lactide-co-glycolide)-Grafted Dextran

  • Jeong, Young-Il (The Research Institute of Medical Sciences, Chonnam National University) ;
  • Choi, Ki-Choon (Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University) ;
  • Song, Chae-Eun (Korea Institute of Natural Science Inc.)
  • Published : 2006.08.01

Abstract

In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around $50\;nm{\sim}300\;nm$ according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA. $^1H-NMR$ spectroscopy using $D_2O$ and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.

Keywords

References

  1. Akiyoshi, K., Kobayashi, S., Shichibe, S., Mix, D., Baudys, M., Kim, S. W., and Sunamoto, J., Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J. Control. Release., 54, 313-320 (1998) https://doi.org/10.1016/S0168-3659(98)00017-0
  2. Allemann, E., Gurny, R., and Doelker, E., Drug-loaded nanoparticles- preparation methods and drug targeting issues. Europ. J. Pharm. Biopharm., 39, 173-191 (1993)
  3. Andrianov, A. K. and Payne, L. G., Polymeric carriers for oral uptake of microparticulates. Adv. Drug Del. Rev., 34, 155-170 (1998) https://doi.org/10.1016/S0169-409X(98)00038-6
  4. Basit, A. W., Advances in colonic drug delivery. Drugs, 65, 1991-2007 (2005) https://doi.org/10.2165/00003495-200565140-00006
  5. Carino, G. P., Jacob, J. S., and Mathiowitz, E., Nanosphere based oral insulin delivery. J. Control. Release., 65, 261-269 (2000) https://doi.org/10.1016/S0168-3659(99)00247-3
  6. Chen, H. and Langer, R., Oral particulate delivery: status and future trends. Adv. Drug Del. Rev., 34, 339-350 (1998) https://doi.org/10.1016/S0169-409X(98)00047-7
  7. Desai, M. P., Labhasetwar, V., Amidon, G. L., and Levy, R. J., Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res., 13, 1838-1845 (1996) https://doi.org/10.1023/A:1016085108889
  8. Donini, C., Robinson, D. N., Colombo, P., Giordano, F., and Peppas, N. A., Preparation of poly(methacrylic acid-g-poly (ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications. Int. J. Pharm., 245, 83-91 (2002) https://doi.org/10.1016/S0378-5173(02)00335-6
  9. Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer, R., Biodegradable long-circulating polymeric nanospheres. Science, 263, 1600-1603 (1994) https://doi.org/10.1126/science.8128245
  10. Hussain, N., Jani, P. U., and Florence, A. T., Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm. Res., 14, 613-618 (1997) https://doi.org/10.1023/A:1012153011884
  11. Ichinose, K., Tomiyama, N., Nakashima, M., Ohya, Y., Ichikawa, M., Ouchi, T., and Kanematsu, T., Antitumor activity of dextran derivatives immobilizing platinum complex (II). Anticancer Drugs, 11, 33-38 (2000) https://doi.org/10.1097/00001813-200001000-00006
  12. Jeong, Y. I., Cheon, J. B., Kim, S. H., Nah, J. W., Lee, Y. M., Sung, Y. K., Akaike, T., and Cho, C. S., Clonazepam release from core-shell type nanoparticles in vitro. J. Control Release., 51, 169-178 (1998) https://doi.org/10.1016/S0168-3659(97)00163-6
  13. Jung, S. W., Jeong, Y. I., and Kim, S. H., Characterization of hydrophobized pullulan with various hydrophobicities. Int. J. Pharm., 254, 109-121 (2003) https://doi.org/10.1016/S0378-5173(03)00006-1
  14. Jung, S. W., Jeong, Y. I., Kim, Y.H., and Kim, S. W., Selfassembled nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier. Arch. Pharm. Res., 27, 562-569 (2004) https://doi.org/10.1007/BF02980132
  15. Kwon, G. S., Naito M., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Polymeric micelles based on AB block copolymers of poly(ethylene oxide) and poly(${\beta}$-benzyl Laspartate). Langmuir, 9, 945-949 (1993) https://doi.org/10.1021/la00028a012
  16. Molteni L., Dextran and inulin conjugates as drug carriers. Methods in Enzymolozy, 112, 285-298 (1985) https://doi.org/10.1016/S0076-6879(85)12024-0
  17. Nishikawa, T., Akiyoshi, K., and Sunamoto, J., supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the selfaggregate of cholesterol-bearing pullulan and ${\alpha}$-chymotrypsin. Macromolecules, 27, 7654-7659 (1994) https://doi.org/10.1021/ma00104a021
  18. Norris, D. A., Puri, N., and Sinko, P. J., The effect of physical barriers and properties on the oral absorption of particulates. Adv. Drug Del. Rev., 34, 135-154 (1998) https://doi.org/10.1016/S0169-409X(98)00037-4
  19. Peppas N. A. and Robinson J. R., Bioadhesives for optimization of drug delivery. J. Drug Targeting., 3, 183-184 (1995) https://doi.org/10.3109/10611869509015943
  20. Van Dijk-Wolthuis, W. N. E., Franssen, O., Talsma, H., Van Steenbergen, M. J., Kettenes-Van den Bosch, J. J., and Hennink, W. E., Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules, 28, 6317-6322 (1995) https://doi.org/10.1021/ma00122a044
  21. Wilhelm, M., Zaho, C. L., Wang, Y., Xu, R., Winnik, M. A., Mura, J. L., Riess, G., and Croucher, M. D., Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules, 24, 1033-1040 (1991) https://doi.org/10.1021/ma00005a010