Browse > Article

Doxorubicin Release from Core-Shell Type Nanoparticles of Poly(DL-lactide-co-glycolide)-Grafted Dextran  

Jeong, Young-Il (The Research Institute of Medical Sciences, Chonnam National University)
Choi, Ki-Choon (Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University)
Song, Chae-Eun (Korea Institute of Natural Science Inc.)
Publication Information
Archives of Pharmacal Research / v.29, no.8, 2006 , pp. 712-719 More about this Journal
Abstract
In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around $50\;nm{\sim}300\;nm$ according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA. $^1H-NMR$ spectroscopy using $D_2O$ and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.
Keywords
Doxorubicin; Dextran; Core-shell type nanoparticles; Poly(D,L-lactide-co-glycolide); Biodegradability; Colon delivery;
Citations & Related Records

Times Cited By Web Of Science : 13  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Akiyoshi, K., Kobayashi, S., Shichibe, S., Mix, D., Baudys, M., Kim, S. W., and Sunamoto, J., Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J. Control. Release., 54, 313-320 (1998)   DOI   ScienceOn
2 Andrianov, A. K. and Payne, L. G., Polymeric carriers for oral uptake of microparticulates. Adv. Drug Del. Rev., 34, 155-170 (1998)   DOI   ScienceOn
3 Hussain, N., Jani, P. U., and Florence, A. T., Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm. Res., 14, 613-618 (1997)   DOI   ScienceOn
4 Molteni L., Dextran and inulin conjugates as drug carriers. Methods in Enzymolozy, 112, 285-298 (1985)   DOI
5 Nishikawa, T., Akiyoshi, K., and Sunamoto, J., supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the selfaggregate of cholesterol-bearing pullulan and ${\alpha}$-chymotrypsin. Macromolecules, 27, 7654-7659 (1994)   DOI   ScienceOn
6 Van Dijk-Wolthuis, W. N. E., Franssen, O., Talsma, H., Van Steenbergen, M. J., Kettenes-Van den Bosch, J. J., and Hennink, W. E., Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules, 28, 6317-6322 (1995)   DOI   ScienceOn
7 Peppas N. A. and Robinson J. R., Bioadhesives for optimization of drug delivery. J. Drug Targeting., 3, 183-184 (1995)   DOI   ScienceOn
8 Jung, S. W., Jeong, Y. I., Kim, Y.H., and Kim, S. W., Selfassembled nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier. Arch. Pharm. Res., 27, 562-569 (2004)   DOI   ScienceOn
9 Wilhelm, M., Zaho, C. L., Wang, Y., Xu, R., Winnik, M. A., Mura, J. L., Riess, G., and Croucher, M. D., Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules, 24, 1033-1040 (1991)   DOI
10 Basit, A. W., Advances in colonic drug delivery. Drugs, 65, 1991-2007 (2005)   DOI   ScienceOn
11 Kwon, G. S., Naito M., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Polymeric micelles based on AB block copolymers of poly(ethylene oxide) and poly(${\beta}$-benzyl Laspartate). Langmuir, 9, 945-949 (1993)   DOI   ScienceOn
12 Desai, M. P., Labhasetwar, V., Amidon, G. L., and Levy, R. J., Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res., 13, 1838-1845 (1996)   DOI
13 Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer, R., Biodegradable long-circulating polymeric nanospheres. Science, 263, 1600-1603 (1994)   DOI
14 Jung, S. W., Jeong, Y. I., and Kim, S. H., Characterization of hydrophobized pullulan with various hydrophobicities. Int. J. Pharm., 254, 109-121 (2003)   DOI   ScienceOn
15 Norris, D. A., Puri, N., and Sinko, P. J., The effect of physical barriers and properties on the oral absorption of particulates. Adv. Drug Del. Rev., 34, 135-154 (1998)   DOI   ScienceOn
16 Allemann, E., Gurny, R., and Doelker, E., Drug-loaded nanoparticles- preparation methods and drug targeting issues. Europ. J. Pharm. Biopharm., 39, 173-191 (1993)
17 Ichinose, K., Tomiyama, N., Nakashima, M., Ohya, Y., Ichikawa, M., Ouchi, T., and Kanematsu, T., Antitumor activity of dextran derivatives immobilizing platinum complex (II). Anticancer Drugs, 11, 33-38 (2000)   DOI
18 Jeong, Y. I., Cheon, J. B., Kim, S. H., Nah, J. W., Lee, Y. M., Sung, Y. K., Akaike, T., and Cho, C. S., Clonazepam release from core-shell type nanoparticles in vitro. J. Control Release., 51, 169-178 (1998)   DOI   ScienceOn
19 Carino, G. P., Jacob, J. S., and Mathiowitz, E., Nanosphere based oral insulin delivery. J. Control. Release., 65, 261-269 (2000)   DOI   ScienceOn
20 Donini, C., Robinson, D. N., Colombo, P., Giordano, F., and Peppas, N. A., Preparation of poly(methacrylic acid-g-poly (ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications. Int. J. Pharm., 245, 83-91 (2002)   DOI   ScienceOn
21 Chen, H. and Langer, R., Oral particulate delivery: status and future trends. Adv. Drug Del. Rev., 34, 339-350 (1998)   DOI   ScienceOn