DOI QR코드

DOI QR Code

A Study on the Application of Mongolia Fly Ash as Cement Additive

몽골 플라이애시의 시멘트 혼화재로의 적용에 관한 연구

  • Seo, Sung Kwan (Energy & Environment Division, Eco & Composite Materials Center, KICET) ;
  • Kim, Yoo (Energy & Environment Division, Eco & Composite Materials Center, KICET) ;
  • Cho, Hyung Kyu (Energy & Environment Division, Eco & Composite Materials Center, KICET) ;
  • Chu, Yong Sik (Energy & Environment Division, Eco & Composite Materials Center, KICET)
  • 서성관 (한국세라믹기술원 에너지환경소재본부 에코복합소재센터) ;
  • 김유 (한국세라믹기술원 에너지환경소재본부 에코복합소재센터) ;
  • 조형규 (한국세라믹기술원 에너지환경소재본부 에코복합소재센터) ;
  • 추용식 (한국세라믹기술원 에너지환경소재본부 에코복합소재센터)
  • Received : 2017.09.20
  • Accepted : 2017.11.14
  • Published : 2017.12.31

Abstract

In this study, characteristics of Mongolian fly ash and the possibility of its use as a cement additive through grinding process were examined. Mongolian fly ash was larger than domestic fly ash and less spherical. The CaO content of Mongolian fly ash was higher than domestic fly ash and the other components were similar. After vibratory milling, the mean particle size of fly ash decreased to $7.9{\mu}m$ and the blaine increased. When milled fly ash was mixed with cement, it showed the best compressive strength value at 60 min. These strength values were higher than OPC at all curing times.

본 연구에서는 몽골 플라이애시의 기초물성 및 분쇄과정을 통한 시멘트 혼화재로의 사용가능성을 검토하였다. 몽골 플라이애시는 국내 플라이애시 보다 입자가 컸으며, 구형 입자도 적게 관찰되었다. 몽골 플라이애시의 CaO 함량은 높았으며, 이외 성분은 비슷한 수준이었다. 진동밀 분쇄 후 플라이애시는 $7.9{\mu}m$까지 작아졌으며, 분말도도 증가하였다. 분쇄 플라이애시를 시멘트와 혼합할 경우, 60분 분쇄시 가장 우수한 압축강도 값을 나타내었다. 또한 이들 강도값은 모든 재령에서 OPC 보다도 높은 수준이었다.

Keywords

References

  1. Z. T. Yao et al., 2015 : A comprehensive review on the applications of coal fly ash, Earth-Science Reviews, 141, pp.105-121. https://doi.org/10.1016/j.earscirev.2014.11.016
  2. Pok-Kie Chang et al., 2003 : Pozzolanic properties of fly ash form a coal fired power plant, Journal of the Korean Ceramic Society, 40(7), pp.702-708. https://doi.org/10.4191/KCERS.2003.40.7.702
  3. Etsuo Sakai et al., 2005 : Hydration of fly ash cement, Cement and Concrete Research, 35, pp.1135-1140. https://doi.org/10.1016/j.cemconres.2004.09.008
  4. Ministry of Environment, 2016 : Guideline on the target of GHG and energy management, official announcement No.2016-255, pp.1-729.
  5. Korea Energy Management Corporation, 2012 : Policy and Review of Mongolia, pp.72-88.
  6. U. Bayarzul et al., 2014 : Comparative study of morphology of various fly ash and pond ashes from different thermal power stations in Mongolia, Proceedings of the Mongolian Academy of Sciences 54(4), pp.5-10.
  7. Chan-Kyu Park et al., 2008 : The Characteristics of Strength of Development and Hydration Heat on High Volume Fly-Ash Concrete, Proceeding of Korea Concrete Society, pp.417-420.
  8. Min-Chul Jung et al., 1997 : Physical properties of floor mortar with fly ash and Ground slag, Cement Symposium, pp.78-84.
  9. Jong-Taek Song et al., Hydration of the fly ash-CaO system in the presence of various chemical activator, 35(2), Journal of the Korean Ceramic Society, 40, pp.185-195.
  10. Sung-Kwan Seo et al., 2016 : A Study on Physical Properties of Mortar Mixed with Fly-ash as Functions of Mill Types and Milling Times, Journal of the Korean Ceramic Society, 53(4), pp.435-443. https://doi.org/10.4191/kcers.2016.53.4.435
  11. S. Donatello et al., 2009 : Recent developments in macro-defect-free (MDF) cements, Construction and Building Materials, 23, pp.1761-1767. https://doi.org/10.1016/j.conbuildmat.2008.09.001
  12. Harald Justnes et al., 2005 : Mechanism for performance of energetically modified cement versus corresponding blended cement, Cement and Concrete Research, 35, pp.315-323. https://doi.org/10.1016/j.cemconres.2004.05.022
  13. L. Elfgren et al., 2005 : Microstructure and performance of energetically modified cement (EMC) with high filler content, Cement & Concrete Composites, 29, pp.533-541.