Browse > Article
http://dx.doi.org/10.9713/kcer.2018.56.1.42

Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery  

Kim, Chan Mi (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Kim, Sun Kyung (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Chang, Hankwon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Kil, Dae sup (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Jang, Hee Dong (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Korean Chemical Engineering Research / v.56, no.1, 2018 , pp. 42-48 More about this Journal
Abstract
Silicon has attracted extensive attention due to its high theoretical capacity, low discharge potential and non-toxicity as anode material for lithium ion batteries. In this study, Si-CNT-C composites were fabricated for use as a high-efficiency anode material in a lithium ion battery. Aerosol self-assembly and post-heat treatment processes were employed to fabricate the composites. The morphology of the Si-CNT-C composites was spherical and an average particle size was $2.72{\mu}m$. The size of the composite increased as concentration of Si and CNT increased in the precursor solution. In the Si-CNT-C composites, CNT and C carbonized from glucose were attached to the surface of Si particles. Electrochemical measurement showed that the cycle performance of Si-CNT-C composites was better than that of silicon particles.
Keywords
Si-CNT-C composite; Aerosol self-assembly; Post-heat treatment; Anode material; Lithium ion battery;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Armand, M. and Tarascon, J. M., "Building Better Batteries," Nature, 451, 652-657(2008).   DOI
2 Wu, H. and Cui, Y., "Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries," Nano Today, 7, 414-429(2012).   DOI
3 Bruce, P. G., Scrosati, B. and Tarascon, J. M., "Nanomaterials for Rechargeable Lithium Batteries," Angew. Chem.-Int. Edit., 47, 2930-2946(2008).   DOI
4 Guo, Y. G., Hu, J. S. and Wan, L. J., "Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices," Adv. Mater., 20, 2878-2887(2008).   DOI
5 Xue, L., Xu, G., Li, Y., Li, S., Fu, K., Shi, Q. and Zhang, X., "Carbon-coated Si Nanoparticles Dispersed in Carbon Nanotube Networks as Anode Material for Lithium-ion Batteries," ACS Appl. Mater. Interfaces, 5, 21-25(2012).
6 Xu, Y., Liu, Q., Zhu, Y., Liu, Y., Langrock, A., Zachariah, M. R. and Wang, C., "Uniform Nano-Sn/C Composite Anodes for Lithium ion Batteries," Nano Lett., 13, 470-474(2013).   DOI
7 Goodenough, J. B. and Park, K. S., "The Li-ion Rechargeable Battery: a Perspective," J. Am. Chem. Soc., 135, 1167-1176(2013).   DOI
8 Li, H. and Zhou, H., "Enhancing the Performances of Li-ion Batteries by Carbon-coating: Present and Future," Chem. Commun., 48, 1201-1217(2012).   DOI
9 Esmanski, A. and Ozin, G. A., "Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries," Adv. Funct. Mater., 19, 1999-2010(2009).   DOI
10 Kohandehghan, A., Kalisvaart, P., Kupsta, M., Zahiri, B., Amirkhiz, B. S., Li, Z., Mermarzadeh, E. L., Bendersky, L. A., and Mitlin, D., "Magnesium and Magnesium-silicide Coated Silicon Nanowire Composite Anodes for Lithium-ion Batteries," J. Mater. Chem. A, 1, 1600-1612(2013).   DOI
11 Xiao, J., Xu, W., Wang, D., Choi, D., Wang, W., Li, X., Graff., G. L. and Zhang, J. G., "Stabilization of Silicon Anode for Li-ion Batteries," J. Electrochem. Soc., 157, A1047-A1051(2010).   DOI
12 Oumellal, Y., Delpuech, N., Mazouzi, D., Dupre, N., Gaubicher, J., Moreau, P., Soudan, P., Lestriez, B. and Guyomard, D., "The Failure Mechanism of Nano-sized Si-based Negative Electrodes for Lithium ion Batteries," J. Mater. Chem., 21, 6201-6208(2011).   DOI
13 Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. and Dahn, J. R., "Colossal Reversible Volume Changes in Lithium Alloys," Electrochem. Solid State Lett., 4, A137-A140(2001).   DOI
14 Kang, K. Y., Shin, D. O., Lee, Y. G. and Kim K. M., "Lithium Battery Anode Properties of Ball-Milled Graphite-Silicon Composites," Korean Chem. Eng. Res, 51(4), 411-417(2013).   DOI
15 Yen, J. P., Chang, C. C., Lin, Y. R., Shen, S. T. and Hong, J. L., "Sputtered Copper Coating on Silicon/graphite Composite Anode for Lithium ion Batteries," J. Alloy. Compd., 598, 184-190(2014).   DOI
16 Wang, J., Wang, J. Z., Sun, Z. Q., Gao, X. W., Zhong, C., Chou, S. L. and Liu, H. K., "A Germanium/single-walled Carbon Nanotube Composite Paper as a Free-standing Anode for Lithium-ion Batteries," J. Mater. Chem. A, 2, 4613-4618(2014).   DOI
17 Wu, J., Zhu, Z., Zhang, H., Fu, H., Li, H., Wang, A., Zhang, H. and Hu, Z., "A Novel Nano-structured Interpenetrating Phase Composite of Silicon/graphitetin for Lithium-ion Rechargeable Batteries Anode Materials," J. Alloy. Compd., 596, 86-91(2014).   DOI
18 Terranova, M. L., Orlanducci, S., Tamburri, E., Guglielmotti, V. and Rossi, M., "Si/C Hybrid Nanostructures for Li-ion Anodes: An Overview," J. Power Sources, 246, 167-177(2014).   DOI
19 Lee, D. H., Seo, S. D., Lee, G. H., Hong, H. S. and Kim, D. W., "One-pot Synthesis of $Fe_3O_4$/Fe/MWCNT Nanocomposites Via Electrical Wire Pulse for Li ion Battery Electrodes," J. Alloy. Compd., 606, 204-207(2014).   DOI
20 Zhai, C., Du, N., Zhang, H., Yu, J., Wu, P., Xiao, C. and Yang, D., "Assembling CoSn3 Nanoparticles on Multiwalled Carbon Nanotubes with Enhanced Lithium Storage Properties," Nanoscale, 3, 1798-1801(2011).   DOI
21 Zhai, C., Du, N., Zhang, H., Yu, J. and Yang, D., "Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-performance Anode Materials of Lithium-ion Batteries," ACS Appl. Mater. Interfaces, 3, 4067-4074(2011).   DOI
22 Frackowiak, E., Gautier, S., Gaucher, H., Bonnamy, S. and Beguin, F., "Electrochemical Storage of Lithium in Multiwalled Carbon Nanotubes," Carbon, 37, 61-69(1999).   DOI
23 Claye, A. S., Fischer, J. E., Huffman, C. B., Rinzler, A. G. and Smalley, R. E., "Solid-State Electrochemistry of the Li Single Wall Carbon Nanotube System," J. Electrochem. Soc., 147(8), 2845-2852(2000).   DOI
24 Jang, H. D., Kim, H., Kil, D. S. and Chang, H., "A Novel Recovery of Silicon Nanoparticles from a Waste Silicon Sludge," J. Nanosci. Nanotechnol., 13, 2334-2338(2013).   DOI
25 Kim, B. G., Shin, W. H., Lim, S. Y., Kong, B. S. and Choi, J. W., "A Carbon Nanotubes-Silicon Nanoparticles Network for High Performance Lithium Rechargeable Battery Anodes," J. Electrochem. Sci. Technol., 3, 116-122(2012).   DOI
26 Wang, J., Liu, D. H., Wang, Y. Y., Hou, B. H., Zhang, J. P., Wang, R. S. and Wu, X. L., "Dual-carbon Enhanced Silicon-based Composite as Superior Anode Material for Lithium ion Batteries," J. Power Sources, 307, 738-745(2016).   DOI
27 Oh, J. M., Kim, H., Chang, H., Lee, B. K., Jang, H. D. and Lim, J. W., "Preparation of 6N Grade Silicon Ingot by Combined Purification Processes from Waste Silicon Cutting Sludge," Int. J. Mater. Res., 106, 937-942(2015).   DOI
28 Byon, H. R., Lee, S. W., Chen, S., Hammond, P. T. and Shao-Horn, Y., "Thin Films of Carbon Nanotubes and Chemically Reduced Graphenes for Electrochemical Micro-capacitors," Carbon, 49, 457-467(2011).   DOI
29 Jang, H. D., Kim, H., Chang, H., Kim, J., Roh, K. M., Choi, J. H., Cho, B. G., Park, E., Kim, H., Luo, J. and Huang, J., "Aerosol-assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium ion Batteries," Sci Rep, 5, 9431/1-5(2015).