Browse > Article

Electrohydrodynamic Spray Drying Using Co-axial Nozzles for Protein Encapsulation  

Ho, Hwan-Ki (Department of Chemical Engineering and Materials Science, Chung-Ang University)
Park, Se-Hyun (Department of Chemical Engineering and Materials Science, Chung-Ang University)
Park, Chul-Ho (Department of Chemical Engineering and Materials Science, Chung-Ang University)
Lee, Jong-Hwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
Publication Information
Polymer(Korea) / v.33, no.4, 2009 , pp. 353-357 More about this Journal
Abstract
Spray drying is an effective and stable process, which has been widely used to produce pharmaceutical powders. In the traditional spray drying process, it was not quite easy to control the aggregation and the size of particles. Particularly, the preparation of polymeric particles was relatively hard compared to the preparation of food and pharmaceutical ingredients, typically organic materials of small molecular weights. In this study, modification of a conventional spray dryer was tried to use electrical charge and co-axial nozzles to prepare polymeric particles. Poly(ethylene glycol) and poly (D,L-lactide-co-glycolide) were used as the inner polymeric materials, and lactose as the outer shell materials. The results showed that electrohydrodynamic spray-dried particles had a relatively uniform size and particle morphology, and the aggregation of particles could be suppressed compared to the conventional spray-dried particles. The electrohydrodynamic spray-dried powders consisted of spherical particles of $2{\sim}5{\mu}m$ diameters.
Keywords
spray drying; co-axial nozzles; microparticles; electrospraying; drug delivery;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 O. Lastow, J. Andresson, A. Nilsson, and W. Balachandran, Pharmaceutical Development and Thechnology, 12, 175 (2007)   DOI   ScienceOn
2 J. XIe, J. C. M. Marijinissen, and C. H. Wang, Biomaterials, 27, 3321 (2006)   DOI   ScienceOn
3 M. E. Rodriguez-Huezo, R. Pedroza-Islas, L. A. Prado- Barragan, C. I. Beristain, and E. J. Vernon-Carter, J. Food Sci., 69, E351 (2004)   DOI   ScienceOn
4 A. M. Ganan-Calvo, J. Aerosol Sci., 30, 863 (1999)   DOI   ScienceOn
5 G. Leach, G. Oliveira, and R. Morais, J. Ind. Microbiol. Biotech., 20, 82 (1999)   DOI   ScienceOn
6 A. G. Marin, I. G. Loscertales, M. Marquez, and A. Barrero, Phys. Rev. Lett., 98, 014502 (2007)   DOI   ScienceOn
7 J. M. Lopez-Herrera, A. Barrero, A. Lopez, I. G. Loscertales, and M. Marquez, J. Aerosol Sci., 34, 535 (2003)   DOI   ScienceOn
8 I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, Science, 295, 1695 (2002)   DOI   PUBMED   ScienceOn
9 F. X. Lacasse, P. Hildgen, and J. N. McMullen, Int. J. Pharm., 174, 101 (1998)   DOI   ScienceOn
10 M. Asada, H. Akahashi, H. Okamoto, H. Tanino, and K. Danjo, Int. J. Pharm., 270, 167 (2004)   DOI   PUBMED   ScienceOn
11 S. N. Jayasinghe and A. Townsend-Nicholson, Lab Chip, 6, 1086 (2006)   DOI   ScienceOn
12 T. Sakai, M. Sadakata, M. Sato, and K. Kimura, Atomization Sprays, 1, 171 (1991)   DOI
13 J. Xie, W. J. Ng, L. Y. Lee, and C. H. Wamg, J. Colloid Interf. Sci., 317, 469 (2008)   DOI   ScienceOn
14 Y. L. Su, Z.Y. Fu, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, and Q. J. Zhang, Powder Technology, 184, 114 (2008)   DOI   ScienceOn
15 W. C. Hinds, Aerosol Technology, Properties, Behavior and Measurement of Airborne Particle, John Wiley & Sons, New York, 1982
16 F. Mei and D. R. Chen, Phys. Fluids, 19, 103303 (2007)   DOI   ScienceOn
17 M. Jimenez, H. S. Garcia, and C. I. Beristain, Eur. Food Res. Technol., 219, 588 (2004)   DOI   ScienceOn