Synthesis of Tetramethylorthosilicate (TMOS) and Silica Nanopowder from the Waste Silicon Sludge

폐(廢)실리콘슬러지로부터 TMOS 및 실리카 나노분말(粉末) 제조(製造)

  • Jang, Hee-Dong (Nano-Materials Group, Minerals & Materials Processing Division, Korea Institute Geoscience & Mineral Resources) ;
  • Chang, Han-Kwon (Nano-Materials Group, Minerals & Materials Processing Division, Korea Institute Geoscience & Mineral Resources) ;
  • Cho, Kuk (Nano-Materials Group, Minerals & Materials Processing Division, Korea Institute Geoscience & Mineral Resources) ;
  • Kil, Dae-Sup (Nano-Materials Group, Minerals & Materials Processing Division, Korea Institute Geoscience & Mineral Resources)
  • 장희동 (한국지질자원연구원 자원활용소재연구부 나노물질연구팀) ;
  • 장한권 (한국지질자원연구원 자원활용소재연구부 나노물질연구팀) ;
  • 조국 (한국지질자원연구원 자원활용소재연구부 나노물질연구팀) ;
  • 길대섭 (한국지질자원연구원 자원활용소재연구부 나노물질연구팀)
  • Published : 2007.10.27

Abstract

Tetramethylorthosilicate (TMOS) and silica nanopowder were synthesized from the waste silicon sludge containing 15% weight of silicon powder. TMOS, a precursor of silica nanopowder, was firstly prepared from the waste silicon sludge by catalytic chemical reaction. The maximum recovery of the TMOS was 100% after 5 hrs regardless of reaction temperature above $130^{\circ}C$. But the initial reaction rate became faster while the reaction temperature was higher than $150^{\circ}C$. As the methanol feedrate Increased from 0.8 ml/min to 1.4 ml/min, the yield of reaction was not varied after 3 hrs. Then, silica nanopowder was synthesized from the synthesized TMOS by flame spray pyrolysis. The morphology of as-prepared silica nanopowder was spherical and non-aggregated. The average particle diameters ranged from 9 nm to 30 nm and were in proportional to the precursor feed rate, and precursor concentration.

폐실리콘 슬러지로부터 테트라메틸오쏘실리케이트(TMOS)와 실리카 나노분말을 제조하였다. 먼저, 실리카 나노분말의 전구체인 TMOS를 폐실리콘 슬러지로부터 촉매 화학반응에 의해 합성하였다. TMOS의 합성실험에서 반응온도가 $130^{\circ}C$ 이상에서는 반응시간이 5시간 경과 시 반응온도에 무관하게 100%의 반응율을 나타내었다. 그러나 $150^{\circ}C$ 이상에서는 초기 반응속도가 빨라졌다. 메탄올 주입속도를 0.8 ml/min에서 1.4 ml/min로 증가시에는 3시간 경과 후에는 반응율이 변화하지 않았다. 이와 같이 합성된 TMOS로부터 화염분무열분해법에 의해 실리카 나노분말을 제조하였다. 제조된 실리카 나노분말은 구형이며, 무응집 형태이었다. 평균입자 크기는 전구체의 주입속도 및 농도변화에 따라 9 nm에서 30 nm로 변화하였다.

Keywords

References

  1. Herbert, G., 1994: Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process, J. Eur. Ceram. Soc., 14(3), pp. 205-214 https://doi.org/10.1016/0955-2219(94)90088-4
  2. Preghenella, M., Pegoretti, A. and Migliaresi, C., 2005: Thermo-mechanical characterization of fumed silica-epoxy nanocomposites, Polym., 46(26), pp. 12065-12072 https://doi.org/10.1016/j.polymer.2005.10.098
  3. Jang, H.D., 2001: Experimental study of synthesis of silica nanoparticles by a bench-scale diffusion flame reactor, Powder Technol., 119(2-3), pp. 102-108 https://doi.org/10.1016/S0032-5910(01)00398-9
  4. Jang, H.D., 1999: Synthesis of silica nanoparticles from tetraethylorthosilicate (TEOS) vapor in a bench-scale flame reactor, J. Aerosol Sci., 30(Suppl. 1), pp. s343-s344 https://doi.org/10.1016/S0021-8502(99)80183-9
  5. Madler, L., et al., 2002: Controlled synthesis of nanostructured particles by flame spray pyrolysis, J. Aerosol Sci., 33(2), pp. 369-389 https://doi.org/10.1016/S0021-8502(01)00159-8
  6. Dabadie, T., et al., 1995: Synthesis of inorganic gels in a lyotropic liquid crystal medium. I. Synthesis of silica gels in lamellar phases obtained from non-ionic surfactants, J. Sol-Gel. Sci. Technol., 4(2), pp 107-116 https://doi.org/10.1007/BF00491677
  7. Berggren, A., Palmqvist, A., Holmberg, K., 2005: Surfactanttemplated mesostructnred materials from inorganic silica, Soft Matter, 1(3), pp. 219-226 https://doi.org/10.1039/b507551n
  8. Kawakami, N., et al., 2000: Preparation of highly porous silica aerogel thin film by supercritical drying, Jpn, J. appl. Phys. Part 2: Letters, 39(3), pp. L182-L184 https://doi.org/10.1143/JJAP.39.L182
  9. Friedlander, S. K., 2000: Smoke, Dust, and Haze: Fundamentals of Aerosol Dynaruics, second ed., Oxford, New York