• 제목/요약/키워드: spatial optimization

검색결과 422건 처리시간 0.025초

A Holistic Approach to Optimizing the Lifetime of IEEE 802.15.4/ZigBee Networks with a Deterministic Guarantee of Real-Time Flows

  • Kim, Kang-Wook;Park, Myung-Gon;Han, Junghee;Lee, Chang-Gun
    • Journal of Computing Science and Engineering
    • /
    • 제9권2호
    • /
    • pp.83-97
    • /
    • 2015
  • IEEE 802.15.4 is a global standard designed for emerging applications in low-rate wireless personal area networks (LR-WPANs). The standard provides beneficial features, such as a beacon-enabled mode and guaranteed time slots for realtime data delivery. However, how to optimally operate those features is still an open issue. For the optimal operation of the features, this paper proposes a holistic optimization method that jointly optimizes three cross-related problems: cluster-tree construction, nodes' power configuration, and duty-cycle scheduling. Our holistic optimization method provides a solution for those problems so that all the real-time packets can be delivered within their deadlines in the most energy-efficient way. Our simulation study shows that compared to existing methods, our holistic optimization can guarantee the on-time delivery of all real-time packets while significantly saving energy, consequently, significantly increasing the lifetime of the network. Furthermore, we show that our holistic optimization can be extended to take advantage of the spatial reuse of a radio frequency resource among long distance nodes and, hence, significantly increase the entire network capacity.

상대좌표를 이용한 복합연쇄 로봇기구의 역기구학 (Inverse Kinematics of Complex Chain Robotic Mechanism Using Ralative Coordinates)

  • 김창부;김효식
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3398-3407
    • /
    • 1996
  • In this paper, we derive an algorithm and develope a computer program which analyze rapidly and precisely the inverse kinematics of robotic mechanism with spatial complex chain structure based on the relative coordinates. We represent the inverse kinematic problem as an optimization problem with the kinematic constraint equations. The inverse kinematic analysis algorithm, therefore, consists of two algorithms, the main, an optimization algorithm finding the motion of independent joints from that of an end-effector and the sub, a forward kinematic analysis algorithm computing the motion of dependent joints. We accomplish simulations for the investigation upon the accuracy and efficiency of the algorithm.

Shape & Topology GAs에 의한 트러스의 단면, 형상 및 위상최적설계 (Size, Shape and Topology Optimum Design of Trusses Using Shape & Topology Genetic Algorithms)

  • 박춘욱;여백유;김수원
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.43-52
    • /
    • 2004
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algerian was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

A FRAMEWORK FOR QUERY PROCESSING OVER HETEROGENEOUS LARGE SCALE SENSOR NETWORKS

  • Lee, Chung-Ho;Kim, Min-Soo;Lee, Yong-Joon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.101-104
    • /
    • 2007
  • Efficient Query processing and optimization are critical for reducing network traffic and decreasing latency of query when accessing and manipulating sensor data of large-scale sensor networks. Currently it has been studied in sensor database projects. These works have mainly focused on in-network query processing for sensor networks and assumes homogeneous sensor networks, where each sensor network has same hardware and software configuration. In this paper, we present a framework for efficient query processing over heterogeneous sensor networks. Our proposed framework introduces query processing paradigm considering two heterogeneous characteristics of sensor networks: (1) data dissemination approach such as push, pull, and hybrid; (2) query processing capability of sensor networks if they may support in-network aggregation, spatial, periodic and conditional operators. Additionally, we propose multi-query optimization strategies supporting cross-translation between data acquisition query and data stream query to minimize total cost of multiple queries. It has been implemented in WSN middleware, COSMOS, developed by ETRI.

  • PDF

교차로와 구조물을 고려한 도로선형 최적화 모형 개발 (Modeling Intersections and Other Structures for Highway Alignment Optimization)

  • 김응철
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 2003년도 제43회 학술발표회논문집
    • /
    • pp.21-71
    • /
    • 2003
  • Previous alignment optimization models have not adequately considered intersections and other structures such as bridges, tunnels, grade separations and interchanges which can very strongly affect alignment decisions. This paper develops comprehensive cost functions for intersections and other structures and incorporates them in recently developed highway alignment optimization models connected with genetic algorithms and geographical information systems. The result is a fast and computerized process for extracting, analyzing spatial data, evaluating candidate alignments and optimizing them. A method for locally optimizing intersections is also developed. It improves search flexibility by saving good alignments whose unacceptable crossing angles with existing roads can be fixed, Through case studies, the developed model is found to produce feasible and efficient solutions.

  • PDF

PSO-optimized Pareto and Nash equilibrium gaming-based power allocation technique for multistatic radar network

  • Harikala, Thoka;Narayana, Ravinutala Satya
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.17-30
    • /
    • 2021
  • At present, multiple input multiple output radars offer accurate target detection and better target parameter estimation with higher resolution in high-speed wireless communication systems. This study focuses primarily on power allocation to improve the performance of radars owing to the sparsity of targets in the spatial velocity domain. First, the radars are clustered using the kernel fuzzy C-means algorithm. Next, cooperative and noncooperative clusters are extracted based on the distance measured using the kernel fuzzy C-means algorithm. The power is allocated to cooperative clusters using the Pareto optimality particle swarm optimization algorithm. In addition, the Nash equilibrium particle swarm optimization algorithm is used for allocating power in the noncooperative clusters. The process of allocating power to cooperative and noncooperative clusters reduces the overall transmission power of the radars. In the experimental section, the proposed method obtained the power consumption of 0.014 to 0.0119 at K = 2, M = 3 and K = 2, M = 3, which is better compared to the existing methodologies-generalized Nash game and cooperative and noncooperative game theory.

물류산업의 공간연구를 위한 개념 체계에 관한 연구 (A Study on the Conceptual Frame for Spatial Study of Logistics Industry)

  • 성신제;강상목
    • 대한지리학회지
    • /
    • 제46권1호
    • /
    • pp.81-99
    • /
    • 2011
  • 본 연구는 다각적으로 이루어지고 있는 물류산업의 공간적 연구를 종합적으로 정리하여 이를 체계화 하고자 함이다. 물류산업은 물류기능별 독립적 최적화, 전문화된 물류서비스를 제공하는 자재관리와 물적유통, 로지스틱스, 정보통신 기술과 경영이 포함된 공급사슬관리 단계로 발전하면서 복잡한 공간조직을 형성한다. 물류산업의 복잡한 공간조직은 지리공간과 가상공간, 분업과 통합, 매개화와 탈매개화로 체계화된다. 또한 이들 세 가지의 영역이 공간상에서 혼재하는 역동적 특성을 보인다. 이 역동적 특성은 정보통신 기술과 경제활동의 공간 간의 상호작용과 밀접한 관계가 있다.4

연성 막구조의 파라메트릭 설계 시스템 개발 (Development of a Parametric Design System for Membrane Structures)

  • 최현철;이시은;김치경
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

Joint Antenna Selection and Multicast Precoding in Spatial Modulation Systems

  • Wei Liu;Xinxin Ma;Haoting Yan;Zhongnian Li;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.3204-3217
    • /
    • 2023
  • In this paper, the downlink of the multicast based spatial modulation systems is investigated. Specifically, physical layer multicasting is introduced to increase the number of access users and to improve the communication rate of the spatial modulation system in which only single radio frequency chain is activated in each transmission. To minimize the bit error rate (BER) of the multicast based spatial modulation system, a joint optimizing algorithm of antenna selection and multicast precoding is proposed. Firstly, the joint optimization is transformed into a mixed-integer non-linear program based on single-stage reformulation. Then, a novel iterative algorithm based on the idea of branch and bound is proposed to obtain the quasioptimal solution. Furthermore, in order to balance the performance and time complexity, a low-complexity deflation algorithm based on the successive convex approximation is proposed which can obtain a sub-optimal solution. Finally, numerical results are showed that the convergence of our proposed iterative algorithm is between 10 and 15 iterations and the signal-to-noise-ratio (SNR) of the iterative algorithm is 1-2dB lower than the exhaustive search based algorithm under the same BER accuracy conditions.

Transmit Antenna Selection for Quadrature Spatial Modulation Systems with Power Allocation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.98-108
    • /
    • 2020
  • We consider transmit antenna selection combined with power allocation for quadrature spatial modulation (QSM) systems to improve the error rate performance. The Euclidean distance-based joint optimization criterion is presented for transmit antenna selection and power allocation in QSM. It requires an exhaustive search and thus high computational complexity. Thus its reduced-complexity algorithm is proposed with a strategy of decoupling, which is employed to successively find transmit antennas and power allocation factors. First, transmit antennas are selected without considering power allocation. After selecting transmit antennas, power allocation factors are determined. Simulation results demonstrate considerable performance gains with lower complexity for transmit antenna selected QSM systems with power allocation, which can be achieved with limited rate feedback.