Browse > Article
http://dx.doi.org/10.7236/IJASC.2020.9.1.98

Transmit Antenna Selection for Quadrature Spatial Modulation Systems with Power Allocation  

Kim, Sangchoon (Department of Electronics Engineering, Dong-A University)
Publication Information
International journal of advanced smart convergence / v.9, no.1, 2020 , pp. 98-108 More about this Journal
Abstract
We consider transmit antenna selection combined with power allocation for quadrature spatial modulation (QSM) systems to improve the error rate performance. The Euclidean distance-based joint optimization criterion is presented for transmit antenna selection and power allocation in QSM. It requires an exhaustive search and thus high computational complexity. Thus its reduced-complexity algorithm is proposed with a strategy of decoupling, which is employed to successively find transmit antennas and power allocation factors. First, transmit antennas are selected without considering power allocation. After selecting transmit antennas, power allocation factors are determined. Simulation results demonstrate considerable performance gains with lower complexity for transmit antenna selected QSM systems with power allocation, which can be achieved with limited rate feedback.
Keywords
Quadrature Spatial Modulation (QSM); Power Allocation; Euclidean Distance; Maximum Likelihood (ML) Receiver; Multiple Input Multiple Output (MIMO);
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 R. Rajashekar, K. V. S. Hari, and L. Hanzo, "Quantifying the transmit diversity order of Euclidean distance based antenna selection in spatial modulation," IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1434-1437, Sep. 2015. DOI: 10.1109/LSP.2015.2408574   DOI
2 Z. Sun, Y. Xiao, P. Yang, S. Li, W. Xiang, "Transmit antenna selection schemes for spatial modulation systems: Search complexity reduction and large-scale MIMO applications," IEEE Trans. Veh. Tech., vol. 66, no. 9, pp. 8010-8021, Sep. 2017. DOI: 10.1109/TVT.2017.2696381   DOI
3 Y. Xiao, Q. Tang, L. Gong, P. Yang, and Z. Yang, "Power scaling for spatial modulation with limited feedback," Int. J. Antennas Propag., vol. 2013, 2013, Art. ID. 718482. [Online]. Available: http://hindawi.co m/journals/ijap/2013/718482/ DOI: 10.1155/2013/718482.
4 P. Yang, Y. Xiao, B. Zhang, S. Li, M. El-Hajjar, and L. Hanzo, "Power allocation-aided spatial modulati on for limited-feedback MIMO systems," IEEE Trans. Veh. Tech., vol. 64, no. 5, pp. 2198-22199, May 2015. DOI: 10.1109/TVT.2014.2339297.   DOI
5 P. Yang, Y. Xiao, S. Li, and L. Hanzo, "A low-complexity power allocation algorithm for multiple-input-multiple-output spatial modulation systems," IEEE Trans. Veh. Tech., vol. 65, no. 3, pp. 1819-1825, Mar. 2016. DOI: 10.1109/TWC.2015.2497692   DOI
6 S. Kim, "Antenna selection schemes in quadrature spatial modulation systems," ETRI Journal, vol. 38, no. 4, pp. 612-621, Aug. 2016. DOI: 10.4218/etrij.16.0115.0986.   DOI
7 S. Naidu, N. Pillay, and H. Xu, "Transmit antenna selection schemes for quadrature spatial modulation," Wireless Pers. Commun., vol. 99, no. 1, pp. 299-317, Mar. 2018. DOI: 10.1007/s11277-017-5060-z   DOI
8 S. Kim, "Performance of power scaling-based quadrature spatial modulation systems with limited feedback," IEEJ Trans. Electrical & Electronic Eng., vol. 14, no. 9, pp. 1342-1347, Sep. 2019. DOI: 10.1002/tee.22935   DOI
9 R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, "Spatial modulation," IEEE Trans. Veh. Tech., vol. 57, no. 4, pp. 2228-2241, Jul. 2008. DOI: 10.1109/TVT.2007.912136.   DOI
10 S. Kim, "Signal detection using ordered successive interference cancellation for generalized spatial modulation systems," International Journal of Advanced Smart Convergence, vol. 6, no. 3, pp. 1-8, Jun. 2017. DOI: 10.7236/IJASC.2017.6.3.1.   DOI
11 M. D. Renzo, H. Haas, and P. M. Grant, "Spatial modulation for multiple-antenna wireless systems: a survey," IEEE Trans. Commun. Mag., vol. 49, no. 12, pp. 182-191, Dec. 2011. DOI: 10.1109/MCOM.2011.6094024.
12 R. Y. Mesleh, S. S. Ikki, and H. M. Aggoune, "Quadrature spatial modulation," IEEE Trans. Veh. Tech., vol. 64, no. 6, pp. 2738-2742, Jul. 2015. DOI: 10.1109/TVT.2014.2344036.   DOI
13 S. Kim, "Switching between spatial modulation and quadrature spatial modulation," International Journal of Advanced Smart Convergence, vol. 8, no. 3, pp. 61-68, Aug. 2019. DOI: 10.7236/IJASC.2019.8.3.61.   DOI
14 M. Mohaisen and S. Lee, "Complex quadrature spatial modulation," ETRI Journal, vol. 39, no. 4, pp. 514-524, Aug. 2017. DOI: 10.4218/etrij.17.0116.0933   DOI
15 M. Mohaisen, "Increasing the minimum Euclidean distance of the complex quadrature spatial modulation," IET Communications, vol. 12, no. 7, pp. 854-860, May 2018. DOI: 10.1049/iet-com.2017.1198   DOI
16 R. Rajashekar, K. V. S. Hari, and L. Hanzo, "Antenna selection in spatial modulation systems," IEEE Commun. Lett., vol. 17, no. 3, pp. 521-524, Mar. 2013. DOI: 10.1109/LCOMM.2013.012213.122650   DOI
17 K. Ntontin, M. D. Renzo, A. I. Perez-Neira, and C. Verikoukis, "A low-complexity method for antenna selection in spatial modulation systems," IEEE Commun. Lett., vol. 17, no. 12, pp. 2312-2315, Dec. 2013. DOI: 10.1109/LCOMM.2013.110713.132142   DOI
18 R. Mesleh, H. Haas, C. W. Ahn, and S. Yun, "Spatial modulation - A new low complexity spectral effici ency enhancing technique," in Proc. of the Conf. on Communications and Networking in China, Oct. 2006. DOI: 10.1109/CHINACOM.2006.344658